

    
      
          
            
  
ClarityNLP

ClarityNLP [https://github.com/ClarityNLP/ClarityNLP] is an “interoperable
NLP” platform developed to streamline analysis of unstructured clinical text.
The platform accelerates review of medical charts to extract data and identify
patients for a wide variety of purposes, including research, clinical care,
and quality metrics.  ClarityNLP combines NLP techniques and libraries with a
powerful query language, NLPQL, that lets you create and deploy NLP jobs
quickly without a lot of custom configuration.
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Contact Us

Feel free to connect with us on
Slack [https://join.slack.com/t/claritynlp/shared_invite/enQtNTE5NTUzNzk4MTk5LTFmNWY1NWVmZTA4Yjc5MDUwNTRhZTBmNTA0MWM0ZDNmYjdlNTAzYmViYzAzMTkwZDkzODA2YTJhYzQ1ZTliZTQ].
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This project is licensed under Mozilla Public License 2.0.
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Setup

The instructions below will guide you through the ClarityNLP setup and
installation process. There are several installation options for you to choose
from:


	Local Machine Setup with Docker

Choose this option if you want ClarityNLP on your laptop or desktop, and you
want everything to be configured for you.






	Local Machine Setup without Docker

Choose this option if you want ClarityNLP on your laptop or desktop, and you
want to configure everything yourself.






	Server Setup

Choose this option if you want ClarityNLP deployed on a network-accessible
server. This is a Docker-based installation with OAuth2 security, Traefik,
and Let’s Encrypt.






Local Machine Setup



	Local Machine Setup With Docker
	Prerequisites

	Run the Stack

	Tips & Tricks

	ClarityNLP Links





	Local Machine Setup without Docker
	Overview

	Roadmap

	Install the Prerequisites

	Clone the ClarityNLP GitHub Repository

	Create the Conda Environment for ClarityNLP

	Install Additional Model Files

	Setup MongoDB

	Setup PostgreSQL

	Setup Solr

	Setup the Project Configuration File

	Running Locally without Docker

	Shutdown

	Final Words











Server Setup



	Server Setup
	Prerequisites

	Run the Stack

	Tips & Tricks

	ClarityNLP Links











Document Ingestion



	General Document Ingestion
	Upload Scripts













          

      

      

    

  

    
      
          
            
  
Local Machine Setup With Docker

The instructions below will get you up and running with a Docker-based
ClarityNLP instance on your laptop or desktop. We walk you
through how to configure and deploy a set of Docker containers comprising a
complete ClarityNLP installation for a single user. There is no need for you to
separately install Solr, MongoDB, PostgreSQL, or any of the other technologies
that ClarityNLP uses.

If you want to run ClarityNLP without using Docker, then you need our
Local Machine Setup without Docker.


Prerequisites


Download Source Code

git clone https://github.com/ClarityNLP/ClarityNLP







Checkout Branch

cd ClarityNLP
git checkout <branch> # develop for latest, master for stable, or tagged version







Install Docker

Follow the installation instructions [https://docs.docker.com/install/#supported-platforms].

These are the recommended Docker settings for ClarityNLP. In Docker, they can
be updated via Docker > Preferences > Advanced.


	Memory: >8GB


	Disk: >256GB recommended, but can run on much less (depends on data needs)






Install Docker Compose

Follow the installation guide [https://docs.docker.com/compose/install/].




Run the Stack

The first time running it will take a couple minutes to pull the pre-built images from the
Docker Hub registry. Open a terminal at the project root and run the following:

make start-clarity-localhost





To stop the stack, run this command:

make stop-clarity-localhost







Tips & Tricks

To verify that the Docker containers are running, open a terminal and run:

docker ps





You should see a display that looks similar to this. There are 15 containers
and all should have a status of Up when the system has fully initialized:

CONTAINER ID        IMAGE                                  COMMAND                  CREATED              STATUS              PORTS                                      NAMES
55ac065604e5        claritynlp_ingest-api                  "/app/wait-for-it-ex…"   54 seconds ago       Up 24 seconds       1337/tcp                                   INGEST_API
ce2baf43bab0        claritynlp_nlp-api                     "/api/wait-for-it-ex…"   56 seconds ago       Up 54 seconds       5000/tcp                                   NLP_API
c028e60d1fab        redis:4.0.10                           "docker-entrypoint.s…"   About a minute ago   Up 56 seconds       6379/tcp                                   REDIS
4e1752025734        jpillora/dnsmasq                       "webproc --config /e…"   About a minute ago   Up 56 seconds       0.0.0.0:53->53/udp                         DNSMASQ
2cf1dd63257a        mongo                                  "docker-entrypoint.s…"   About a minute ago   Up 55 seconds       27017/tcp                                  NLP_MONGO
34385b8f4306        claritynlp_nlp-postgres                "docker-entrypoint.s…"   About a minute ago   Up 56 seconds       5432/tcp                                   NLP_POSTGRES
500b36b387b7        claritynlp_ingest-client               "/bin/bash /app/run.…"   About a minute ago   Up 56 seconds       3000/tcp, 35729/tcp                        INGEST_CLIENT
f528b68a7490        claritynlp_dashboard-client            "/bin/bash /app/run.…"   About a minute ago   Up 56 seconds       3000/tcp, 35729/tcp                        DASHBOARD_CLIENT
8290a3846ae0        claritynlp_results-client              "/bin/bash /app/run.…"   About a minute ago   Up 56 seconds       3000/tcp, 35729/tcp                        RESULTS_CLIENT
77fce3ae48fc        claritynlp_identity-and-access-proxy   "pm2-dev process.json"   About a minute ago   Up 57 seconds       6010/tcp                                   IDENTITY_AND_ACCESS_PROXY
b6610c74ec4c        claritynlp_nlp-solr                    "docker-entrypoint.s…"   About a minute ago   Up 56 seconds       8983/tcp                                   NLP_SOLR
45503f0fd389        claritynlp_identity-provider           "docker-entrypoint.s…"   About a minute ago   Up 57 seconds       5000/tcp                                   IDENTITY_PROVIDER
6dc0f7f21a48        claritynlp_nginx-proxy                 "/app/docker-entrypo…"   About a minute ago   Up 56 seconds       0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp   NGINX_PROXY
1d601b064a1c        axiom/docker-luigi:2.7.1               "/sbin/my_init --qui…"   About a minute ago   Up 57 seconds       8082/tcp                                   LUIGI_SCHEDULER
7ab4b8e19c86        mongo:3.4.2                            "docker-entrypoint.s…"   About a minute ago   Up 58 seconds       27017/tcp                                  INGEST_MONGO





The Luigi container will monitor for active tasks. Once everything initializes,
you should periodically see the following lines in the console output:

LUIGI_SCHEDULER   | 2018-10-16 19:46:19,149 luigi.scheduler INFO     Starting pruning of task graph
LUIGI_SCHEDULER   | 2018-10-16 19:46:19,149 luigi.scheduler INFO     Done pruning task graph







ClarityNLP Links

The user interface (UI) components of ClarityNLP can be accessed on your
machine by opening a web browser and entering the URLs provided below.


Dashboard

The ui_dashboard is the main user interface to ClarityNLP. It provides
controls for ingesting documents, creating NLPQL files, accessing results and
lots more.

Dashboard URL: http://localhost/dashboard



Solr Administrative User Interface

Solr provides an administrative user interface that you can use to configure
and explore your ClarityNLP Solr instance. The Apache project provides full
documentation on the admin UI which you can find
here [https://lucene.apache.org/solr/guide/6_6/using-the-solr-administration-user-interface.html].

Perhaps the most useful component of this UI is the
query tool [https://lucene.apache.org/solr/guide/6_6/query-screen.html#query-screen],
which lets you submit queries to Solr and find documents of interest. The
ClarityNLP Solr installation provides more than 7000 documents in a core called
sample.

Solr Admin Interface URL: http://localhost/solr



Luigi Task Monitor

The Luigi project provides a task monitor that displays information on
the currently running ClarityNLP job. ClarityNLP processes documents by dividing
the workload into parallel tasks that are scheduled by Luigi. The task
monitor displays the number of running tasks, how many have finished, any
failures, etc. You can update the task counts by simply refreshing the page.

Lugi Task Monitor URL: http://localhost/luigi



Ingest Client

The Ingest Client provides an easy-to-use interface to help you load new
documents into your ClarityNLP Solr instance. It also helps you map the fields
in your documents to the fields that ClarityNLP expects.

Ingest Client URL: http://localhost/ingest



Results Viewer

The Results Viewer helps you examine the results from each of your
ClarityNLP runs. It highlights specific terms and values and provides an
evaluation mechanism that you can use to score the results that ClarityNLP
found.

Clarity Results Viewer URL: http://localhost/results



NLP API

<TODO - example of how to POST an NLPQL file using Postman or curl with access tokens>






          

      

      

    

  

    
      
          
            
  
Local Machine Setup without Docker

This page provides instructions on how to run ClarityNLP locally on your
machine without having to use Docker or OAuth2. We call this a native
installation of ClarityNLP. It is much simpler to use Docker, since everything
is provided and configured for you. But if you want more control over your
ClarityNLP installation and you prefer to configure everything yourself, then
these are the instructions you need.

This installation is also useful if you neither need nor want the OAuth2
security layers built into the Docker version of ClarityNLP. A native
installation is emphatically NOT appropriate for patient data that must
be protected in a HIPAA-compliant manner. So only store de-identified public
data in your Solr instance if you choose to do this.


Overview

There are five major components in a ClarityNLP installation:
Solr [https://lucene.apache.org/solr/],
PostgreSQL [https://www.postgresql.org/],
MongoDB [https://www.mongodb.com/],
Luigi [https://luigi.readthedocs.io/en/stable/#], and
Flask [http://flask.pocoo.org/].

ClarityNLP uses Solr to index, store, and search documents; Postgres to store
job control data and lots of medical vocabulary; Mongo to store results;
Luigi to control and schedule the various processing tasks, and Flask to
provide API endpoints and the underlying web server.

A native installation means that, at a minimum, Luigi and Flask are
installed and run locally on your system. Solr, Postgres, and Mongo can also
be installed and run locally on your system, or one or more of these can be
hosted elsewhere.

A university research group, for example, could have a hosted Solr instance on
a VPN that is accessible to all members of the group. The Solr instance might
contain MIMIC [https://mimic.physionet.org/] or other de-identified, public
data. Members of the research group running a native ClarityNLP
installation would configure their laptops to use the hosted Solr instance.
This can be accomplished via settings in a ClarityNLP configuration file, as
explained below. These users would install and run Postgres, Mongo, Luigi, and
Flask on their laptops.

At GA Tech we have hosted versions of Solr, Postgres, and MongoDB. Our native
ClarityNLP users only need to install and run Luigi and Flask on their
laptops, and then setup their configuration file to “point” to the hosted
instances.

These flexible configuration options are also available with the
container-based, secure version of ClarityNLP.

The instructions below have been tested on:


	MacOS 10.15 “Catalina”


	MacOS 10.14 “Mojave”


	Ubuntu Linux 18.04 LTS “Bionic Beaver”




Recent versions of MongoDB, PostgreSQL, and Solr are assumed:


	MongoDB version 3.6 - 4.2 community edition on Mac


	MongoDB version 3.6 or greater on Linux


	PostgreSQL version 10, 11, 12, 13


	Solr version 7 or 8






Roadmap

This installation and configuration process is somewhat lengthy, so here’s a
high-level overview of what we’ll be doing.

First, we’ll need to setup and install the source code, the necessary python
libraries, and all of the associated python and non-python dependencies. We
will perform the installation inside of a custom
conda [https://www.anaconda.com]-managed environment
so that ClarityNLP will not interfere with other software on your system.

Next we’ll install and/or configure Solr, PostgreSQL, and MongoDB,
depending on whether you have access to hosted instances or not.

Then we’ll ingest some test documents into Solr and run a sample NLPQL file so
that we can verify that the system works as expected.

After that we’ll show you where you can find instructions for ingesting your
own documents into Solr, after which you will be ready to do your own
investigations.

The instructions below denote MacOS-specific instructions with [MacOS],
Ubuntu-specific instructions with [Ubuntu], and instructions valid for
all operating systems with [All].



Install the Prerequisites

[MacOS] Install the Homebrew package manager [https://brew.sh]
by following the instructions provided at the Homebrew website. We prefer to
use Homebrew since it allows packages to be installed and uninstalled without
superuser privileges.

After installing homebrew, open a terminal window and update your homebrew
installation with:

brew update
brew upgrade





Next, use homebrew to install the git version control system, the curl
command line data transfer tool, and the wget file transfer tool with
these commands:

brew install git curl wget





[Ubuntu] Update your system using the apt package manager with:

sudo apt update
sudo apt upgrade





Then use apt to install the three tools:

sudo apt install git curl wget





[All] Solr requires the java runtime to be installed on your system. In a
terminal window run this command:

java --version





If you see a message about the command java not being found, then you need
to install the java runtime. Please visit the
Oracle Java download site [https://www.oracle.com/downloads/] and
follow the instructions to download and install the latest version of the
Java runtime environment (JRE).

Next, visit the Conda website and install either the
Anaconda [https://www.anaconda.com] python distribution or its much smaller
Miniconda [https://docs.conda.io/en/latest/miniconda.html]
cousin. Anaconda provides a full python-based numerical computing and machine
learning stack. Miniconda provides a minimal python installation. Both give
you the conda package manager, an essential tool for resolving labyrinthine
dependencies among python and non-python packages. The installation package and
instructions for both are provided at the Anaconda website. For these
instructions we will assume that you choose the smaller Miniconda distribution.

Important: download the Miniconda installation package for the latest
python 3 release, not python 2.7.

After installing Miniconda, update to the latest version of conda with:

conda update -n base -c defaults conda







Clone the ClarityNLP GitHub Repository

Open a terminal window on your system and change directories to wherever you
want to install ClarityNLP. Create a new folder called ClarityNLPNative,
to emphasize that it will hold a version of ClarityNLP configured for running
locally on your system without Docker or OAuth2. You can create this
folder, clone the repo, and initialize all submodules with these commands:

cd /some/location/on/your/disk
mkdir ClarityNLPNative
cd ClarityNLPNative
git clone https://github.com/ClarityNLP/ClarityNLP.git
cd ClarityNLP





This command sequence will give you an up-to-date checkout of the master
branch of the main ClarityNLP project. It will also checkout the latest master
branch of all git submodules (additional code that ClarityNLP needs).

The master branch of the git repository holds the most stable and well-tested
version of ClarityNLP. If you instead want the latest development code, with
the caveat that it will be less mature than the code in the master branch,
checkout the develop branch of the repo with these additional commands:

git checkout develop





After checking out your desired branch of the repository, change to the
native_setup folder of the repo with:

cd native_setup







Create the Conda Environment for ClarityNLP

From the ClarityNLPNative/ClarityNLP/native_setup folder, create a
new conda managed environment with:

conda create --name claritynlp python=3.8
conda activate claritynlp
conda config --env --append channels conda-forge
conda install --file conda_requirements.txt
pip install -r conda_pip_requirements.txt





The conda version of pip knows about conda environments and will install
the packages listed in conda_pip_requirements.txt into the claritynlp
custom environment, NOT the system folders.

You can activate the claritynlp custom environment with the command

conda activate claritynlp





Whenever the claritynlp environment is active, the command line in the
terminal window displays (claritynlp) to the left of the prompt. If the
default environment is active it will display (base) instead.

Always activate the claritynlp environment whenever you want to do
anything with ClarityNLP from a terminal window.



Install Additional Model Files

ClarityNLP uses the spacy [https://spacy.io/] and
nltk [https://www.nltk.org/] natural language processing
libraries, which require additional support files. From the same terminal
window in the native_setup folder, run these commands to install the
support files:

conda activate claritynlp   # if not already active
python -m spacy download en_core_web_sm
python -m nltk.downloader "punkt"
python -m nltk.downloader "cmudict"
python -m nltk.downloader "wordnet"







Setup MongoDB

ClarityNLP stores results in MongoDB [https://www.mongodb.com/]. If you do
not have access to a hosted MongoDB installation, you will need to install it
on your system.

[MacOS] Use Homebrew to install MongoDB with:

brew install mongodb-community@4.2





The @4.2 in the installation command specifies the version of the
mongodb-community software package, which is 4.2 as of this
writing. Check the MongoDB website for the latest version and use that if
you prefer.

After the installation finishes, run the command
brew info mongodb-community, which displays information about how to start
the MongoDB server. You can either configure the server to start automatically
each time your system reboots, or you can start the server manually. We will
assume manual startup, which can be accomplished by opening another terminal
window and running this command (assumes the default path to the mongo config
file):

mongod --config /usr/local/etc/mongod.conf





After the server initializes it will deactivate the prompt in the terminal
window, indicating that it is running.

[Ubuntu] Use apt to install MongoDB with:

sudo apt install mongodb





The installation process on Ubuntu should automatically start the MongoDB
server. Verify that it is active with:

sudo systemctl status mongodb





You should see a message stating that the mongodb.service is active and
running. If it is not, start it with:

sudo systemctl start mongodb





Then repeat the status check to verify that it is running.

[All] Now start up the Mongo client and find out if it can
communicate with the running MongoDB server. From a terminal window start the
MongoDB client by running mongo. If the client launches successfully you
should see a > prompt. Enter show databases at the prompt and press
enter. The system should respond with at least the admin database. If you
see this your installation should be OK. You can stop the client by typing
exit at the prompt.

If you have access to a hosted MongoDB instance, you will need to know the
hostname for your mongod server as well as the port number that it listens
on. If your hosted instance requires user accounts, you will also need to know
your username and password. These will be entered into the project.cfg
file in a later step below.



Setup PostgreSQL

Now we need to install and configure PostgreSQL. ClarityNLP uses Postgres for
job control and for storing OMOP vocabulary and concept data.

[MacOS] Perhaps the easiest option for installing Postgres on MacOSX is to
download and install
Postgres.app [https://postgresapp.com/], which takes care of most of the
setup and configuration for you. If you do not have access to a hosted Postgres
server, download the .dmg file from the Postgres.app website, run the
installer, and click initialize to create a new server.

After everything is installed and running, you will see an elephant icon in
the menu bar at the upper right corner of your screen. Click the icon and a
menu will appear. The button in the lower right corner of the menu can be used
to start and stop the database server. For now, click the button and stop the
server, since we need to make a small change to the postgres configuration
file.

[Ubuntu] Install postgres with:

sudo apt install postgresql





The installation process should automatically start the postgres server, as it
did with the MongoDB installation. For now, stop the server with:

sudo systemctl stop postgresql






Edit the PostgreSQL Config File

You will need to follow these configuration steps as well if you have a
hosted Postgres instance. You may need to ask your local database admin to
perform the configuration, depending on whether or not you have superuser
privileges for your particular installation. The location of the data
directory on your hosted instance will likely differ from that provided below,
which is specific to a local installation.

[MacOS] With the Postgres server stopped, click the elephant icon, click
the Open Postgres menu item, and then click the Server Settings
button on the dialog that appears. Note the location of the data directory,
which defaults to ~/Library/Application Support/Postgres/var-11. The
postgresql.conf file is located in the data directory and contains various
important parameters that govern the operation of the database. We need to
edit one of those params to make the data ingest process run more smoothly.

[Ubuntu] The postgres config file for Postgres 10 is stored by default in
/etc/postgresql/10/main/postgresql.conf. If you installed Postgres 11 the
10 should be replaced by an 11. This file is owned by the special postgres
user. To edit the file, switch to this user account with:

sudo -i -u postgres
whoami





The whoami command should display postgres.

[All] Open a text editor, browse to the location indicated above and open
the file postgresql.conf. Search the file for the entry max_wal_size,
which governs the size of the write-ahead log (hence the WAL acronym). If the
entry happens to be commented out, uncomment it. Set its value to 30GB (if
the value is already greater than 30GB don’t change it). By
doing this we prevent checkpoints from occurring too frequently and slowing
down the data ingest process. Save the file after editing.

[Ubuntu] Log out as the postgres user with:

exit





Then restart the Postgres server with either:

[MacOS] Click on the elephant icon and press the start button.

[Ubuntu] Use systemctl to start it:

sudo systemctl start postgresql







Create the Database and a User Account

With the database server installed, configured, and running, we now need to
create a user account. Open a terminal and browse to
ClarityNLPNative/ClarityNLP/utilities/nlp-postgres. From this folder
run the command appropriate to your operating system to start psql:

[MacOS]

psql postgres





[Ubuntu]

sudo -u postgres psql





Then run this command sequence (we suggest using a better password) to setup
the database:

CREATE USER clarity_user WITH LOGIN PASSWORD 'password';
CREATE DATABASE clarity;
\connect clarity
\i ddl/ddl.sql
\i ddl/omop_vocab.sql
\i ddl/omop_indexes.sql
GRANT USAGE ON SCHEMA nlp TO clarity_user;
GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA nlp TO clarity_user;
GRANT ALL PRIVILEGES ON ALL SEQUENCES IN SCHEMA nlp TO clarity_user;





These commands create the database, setup the tables and indexes, and grant
the clarity_user sufficient privileges to use it with ClarityNLP.



Load OMOP Vocabulary Files

THIS STEP IS OPTIONAL. The OMOP vocabulary and concept data is used
by the ClarityNLP synonym expansion macros. Synonym expansion is an optional
feature of ClarityNLP. If you are unfamiliar with OMOP or do not forsee a
need for such synonym expansion you can safely skip this step. The ingestion
process is time-consuming and could take from one to two hours or more,
depending on the speed of your system. If you only want to explore basic
features of ClarityNLP you do not need to load this data, and you can skip
ahead to the Solr setup instructions.

If you do choose to load the data, then keep your psql terminal window
open. From a different terminal window follow these steps to download and
prepare the data for ingest:

cd /tmp
mkdir vocabs
cd vocabs
wget http://healthnlp.gtri.gatech.edu/clarity-files/omop_vocabulary_set.zip
unzip omop_vocabulary_set.zip
rm omop_vocabulary_set.zip





You should see these files in /tmp/vocabs after unzipping:

DOMAIN.csv
CONCEPT_CLASS.csv
CONCEPT.csv
CONCEPT_ANCESTOR.csv
RELATIONSHIP.csv
CONCEPT_SYNONYM.csv
VOCABULARY.csv
CONCEPT_RELATIONSHIP.csv
DRUG_STRENGTH.csv





Go back to your psql window and begin the process of loading data into the
database with:

\i dml/copy_vocab.sql





As mentioned above, the loading process could take a long time, possibly
more than two hours, depending on the speed of your system. As the load
progresses, it should gradually generate the following output:

SET
COPY 2465049
COPY 2781581
COPY 23396378
COPY 21912712
COPY 3878286
COPY 27
COPY 446
COPY 321
COPY 40





Once you start the loading process, just let it run…it will eventually
finish. After loading completes, log out with the command
\q. You can close this window and the tmp/vocabs window.




Setup Solr

ClarityNLP uses Solr [http://lucene.apache.org/solr/] as its document store.
If you do not have access to a hosted Solr instance you will need to install it
on your system.

[MacOS] Use Homebrew to install Solr with:

brew install solr





When the installation finishes run the command brew info solr to learn
how to start Solr. You can either have it start on boot or on demand with the
command

solr start





Start the solr server.

[Ubuntu] Ubuntu does not seem to provide a suitable apt package for Solr,
so you will need to download the Solr distribution from the Apache web site.
Open a web browser to the
Solr download site [https://lucene.apache.org/solr/downloads.html] and
download the binary release for the latest version of Solr 8. For now we will
assume that you download the 8.1.1 binary release, which is in the file
solr-8.1.1.tgz.

Open a terminal window and run these commands to unzip the distribution into
your home directory:

cd ~
mkdir solr
tar -C solr -zxvf ~/Downloads/solr-8.1.1.tgz
mv ~/solr/solr-8.1.1 ~/solr/8.1.1





Open a text editor and add this line to your .bashrc file, which places
the Solr binaries on your path:

export PATH=~/solr/8.1.1/bin:$PATH





Close the text editor, exit the terminal window, and open a new terminal window
to update your path. Run which solr and verify that
~/solr/8.1.1/bin/solr is found.

Start your Solr server by running:

solr start





[All] After starting Solr, check to see that it is running by opening a
web browser to http://localhost:8983 (or the appropriate URL for your
hosted instance). You should see the Solr admin dashboard. If you do, your
Solr installation is up and running.

We need to do some additional configuration of the Solr server and ingest
some test documents. We provide a python script to do this for you.
This script assumes that you are running a recent version of Solr,
version 7 or later. If you are running an older version this script
will not work, since some field type names changed at the
transition from Solr 6 to Solr 7.

Open a terminal window to ClarityNLPNative/ClarityNLP/native_setup.
If you installed Solr on your local system run:

conda activate claritynlp
python ./configure_solr.py





If you use a hosted Solr instance, you should run these commands instead,
replacing the <hostname> and <port_number> placeholders with the values
for your hosted instance:

conda activate claritynlp
python ./configure_solr.py --hostname <hostname_string> --port <port_number>





This script creates a Solr core named claritynlp_test, adds some custom
fields and types, and loads test documents contained in four .csv files.
You should confirm that the files sample.csv, sample2.csv,
sample3.csv, and sample4.csv were loaded successfully (load statements
appear in the console as the script runs). If the load failed for any reason
an error message will be written to stdout.

If the script ran without error, your claritynlp_test Solr core should
have ingested 7016 documents. Verify this by opening a web browser to
http://localhost:8983, or if you have a hosted Solr instance, to its admin
page. From the core selector at the left of the screen, select the
claritynlp_test core and look in the Statistics window. The value of
the Num Docs field should equal 7016.

ClarityNLP expects the ingested documents to have a minimal set of fields, which
appear in the next table:







	Field Name

	Description





	id

	a unique ID for this document



	report_id

	a unique ID for this document (can use same value as id field)



	source

	the name of the document set, the name of your institution, etc.



	subject

	a patient ID, drug name, or other identifier



	report_type

	type of data in the document, i.e. discharge summary,
radiology, etc.



	report_date

	timestamp in a format accepted by Solr:


	YYYY-MM-DDThh:mm:ssZ


	YYYY-MM-DDThh:mm:ss.fZ


	YYYY-MM-DDThh:mm:ss.ffZ


	YYYY-MM-DDThh:mm:ss.fffZ







	report_text

	the actual text of the document, plain text






The test documents have all been configured with these fields. If you
decide to ingest additional documents into the claritynlp_test Solr core,
you will need to ensure that they contain these fields as well. Additional
information on document ingestion can be found
here [https://clarity-nlp.readthedocs.io/en/latest/setup/ingest/generic_ingestion.html].

Python scripts for ingesting some common document types can be found
here [https://github.com/ClarityNLP/Utilities].



Setup the Project Configuration File

In the ClarityNLPNative/native_setup directory you will find a file named
project.cfg. This file gets loaded on startup and it configures Clarity to
run locally on your system.

If you plan to use hosted instances of either Solr, Postgres, or MongoDB, you
will need to edit the file and set the values appropriate for your system. The
file has a simple key=value format for each parameter. The Solr parameters
are located under the [solr] header, the Postgres params under the [pg]
header, and the MongoDB params under the [mongo] header.

For instance, if you installed everything locally, but you changed the
PostgreSQL password above when you created the user account, you need to open
project.cfg in a text editor, locate the [pg] section, find the
password=password entry, and change the text on the right side of the
equals sign to the password that you used. If you used a password
of jx8#$04!Q%, change the password line to password=jx8#$04!Q%.

Make the appropriate changes for Solr, Postgres, and MongoDB to conform to
your desired configuration. Note that the username and password entries for
MongodB are commented out. It is possible to use MongoDB without having to
create a user account. If this is the case for your system, just leave these
entries commented out. Otherwise, uncomment them and set the values appropriate
for your system.

If you followed the instructions above exactly and installed everything
locally, you do not need to change anything in this file.

The provided project.cfg file tells ClarityNLP to use /tmp as the
location for the log file and various temporary files needed during the run. If
you want to put these files somewhere else, create the desired folders on your
system, make them writable, and set the paths in the [tmp] and [log]
sections of project.cfg. The paths would look like this after any changes:

[tmp]
dir=/path/to/my/preferred/tmp/dir

[log]
dir=/path/to/my/preferred/log/dir





Double-check all entries in this file! You will have problems getting the
system to run if you have typos or other errors for these parameters.

Once you are satisifed that the data in the file is correct, copy
project.cfg from the native_setup folder into the nlp folder,
which is where ClarityNLP expects to find it:

cp project.cfg ../nlp/project.cfg







Running Locally without Docker

Now we’re finally ready to run. Here are the instructions for running a job
with your native ClarityNLP system. We open several terminal windows to
start the various servers and schedulers. You can reduce the number of windows
by configuring Mongo, Postgres, and Solr to start as background processes
after each reboot, as mentioned above.


1. Start Solr

If you installed Solr locally and chose the manual start method, start Solr by
opening a terminal window and running solr start.

Verify that you can communicate with your Solr core by pinging it. For a local
installation, open a Web browser and visit this URL:
http://localhost:8983/solr/claritynlp_test/admin/ping. For a hosted
instance, change localhost to whatever is appropriate for your system.

The Web browser should display a status of OK in the final line of output
if it is connected. If you get an HTTP 404 error, make recheck your URL and
make sure that your Solr instance is actually running.



2. Start the MongoDB Server

If you installed MongoDB locally, launch the the mongod server with one
of these options:

[MacOS] Provide the path to your local MongoDB config file as follows
(this command uses the default location):

mongod --config /usr/local/etc/mongod.conf





[Ubuntu]

sudo systemctl start mongodb





Verify that the mongo server is running by typing mongo into a terminal to
start the mongo client. It should connect to the database and prompt for input.
Exit the client by typing exit in the terminal.

For a hosted MongoDB instance you need to supply the connection params from the
terminal. If your Mongo installation does not require accounts and passwords,
connect to it with this command, replacing the <hostname or ip> and
<port number> placeholders with values appropriate for your system:

mongo --host <hostname or ip> --port <port number>





If your hosted instance requires a user name and password, you will need to
supply those as well. More info on connecting to a remote Mongo server can
be found here [https://docs.mongodb.com/manual/mongo/].



3. Start the Postgres Server

If you installed Postgres locally:

[MacOS] Start the server by clicking the elephant icon in the
menu bar at the upper right corner of your screen. Press the start button at
the lower right of the popup menu.

[Ubuntu] Start the server with:

sudo systemctl start postgresql





Verify that your server is available by running the command pg_isready
from a terminal window. It should report accepting connections.

If you use a hosted Postgres instance, check to see that it is up and running
with this command, replacing the hostname and port number with values suitable
for your installation:

pg_isready -h <hostname> -p <port number>





If your Postgres server is running it should respond with
accepting connections.



4. Start the Luigi Task Scheduler

ClarityNLP uses Luigi to schedule and manage the data processing tasks. Luigi
must be started manually in a native setup.

We will run Luigi from a dedicated directory, ~/tmp/luigi. Open another
terminal window and create ~/tmp/luigi with these commands (this only
needs to be done once):

mkdir -p ~/tmp/luigi
cd ~/tmp/luigi
mkdir logs





Launch Luigi with:

conda activate claritynlp
cd ~/tmp/luigi
luigid --pidfile pid --logdir logs --state-path statefile





Luigi should start and the command prompt should become inactive. Keep Luigi
running for your entire ClarityNLP session. You only need to start Luigi once,
even if you plan to run multiple ClarityNLP jobs.



5. Start the Flask Web Server

ClarityNLP uses Flask as the underlying web framework. Flask must be
started manually in a native setup.

Open yet another terminal window, cd to the
ClarityNLPNative/ClarityNLP/nlp directory, and launch the web server
with:

conda activate claritynlp
export FLASK_APP=api.py
python -m flask run





Just like Luigi, the Flask web server only needs to be started once. The web
server prints startup information to the screen as it initializes.
You can safely ignore any No section: warnings. When initialization
completes you should see output similar to this:

* Serving Flask app "nlp.api"
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)





At this point ClarityNLP is fully initialized and waiting for commands.



6. Run a Validation Job

Open (yet another) terminal window and cd to
ClarityNLPNative/ClarityNLP/native_setup. Run the ls command
and note the file validation0.nlpql. This is an NLPQL file that runs
several ClarityNLP tasks on a special validation document that was loaded into
the claritynlp_test Solr core during setup.

When we run this validation job, ClarityNLP will process the validation
document, run the validation tasks, and write results to MongoDB. We can
extract the results into a CSV file for easy viewing and then run a special
python script to check that the results are correct.

You launch a ClarityNLP job by performing an HTTP POST of your NLPQL file to
the ClarityNLP nlpql API endpoint. Since the local running instance of
ClarityNLP is listening at http://localhost:5000, the appropriate URL
is http://localhost:5000/nlpql.  We will see how to post the file using
the curl command line tool below. If you are familiar with
Postman [https://www.getpostman.com/] or other HTTP clients you could
certainly use those instead of curl. Any HTTP client that can POST files
as plain text should be OK.

Before running the NLPQL file, we should first check it for syntax errors.
That can be accomplished by POSTing the NLPQL file to the nlpql_tester API
endpoint. From your terminal window run these commands to do so:

conda activate claritynlp
curl -i -X POST http://localhost:5000/nlpql_tester -H "Content-type:text/plain" --data-binary "@validation0.nlpql"





The curl command should generate output that looks similar to this:

HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 2379
Access-Control-Allow-Origin: *
Server: Werkzeug/0.15.2 Python/3.6.6
Date: Thu, 06 Jun 2019 00:37:26 GMT

{
    "owner": "claritynlp",
     "name": "Validation 0",
     "population": "All",
     "context": "Patient",

     <lots of content omitted...>

     "debug": false,
     "limit": 100,
     "phenotype_id": 1
}





This is the JSON representation of the NLPQL file generated by the ClarityNLP
front end. If you see JSON output similar to this your syntax is correct. If
you do not get JSON output then something is wrong with your NLPQL syntax.
There should be an error message printed in the Flask window. The
validation0.nlpql file has been checked and should contain no syntax errors.

After the syntax check we’re ready to run the job. POST the NLPQL file to the
nlpql endpoint with this command:

curl -i -X POST http://localhost:5000/nlpql -H "Content-type:text/plain" --data-binary "@validation0.nlpql"





The system should accept the job and print out a message stating where you can
download the results. The message should look similar to this:

{
    "job_id": "1",
    "phenotype_id": "1",
    "phenotype_config": "http://localhost:5000/phenotype_id/1",
    "pipeline_ids": [
        1
    ],
    "pipeline_configs": [
        "http://localhost:5000/pipeline_id/1"
    ],
    "status_endpoint": "http://localhost:5000/status/1",
    "results_viewer": "?job=1",
    "luigi_task_monitoring": "http://localhost:8082/static/visualiser/index.html#search__search=job=1",
    "intermediate_results_csv": "http://localhost:5000/job_results/1/phenotype_intermediate",
    "main_results_csv": "http://localhost:5000/job_results/1/phenotype"
 }





The job_id increments each time you submit a new job. The system should
launch approximately 22 tasks to run the commands in this sample file.
If you open a web browser to the luigi_task_monitoring URL, you can watch
the tasks run to completion in the luigi task status display. Just refresh
the window periodically to update the task counts.

After the job finishes you can download a CSV file to see what ClarityNLP
found. The intermediate_results_csv file contains all of the raw data
values that the various tasks found.

To check the results, you need to generate a CSV file from the
intermediate data with a comma for the record delimiter, not a tab.
A tab character seems to be the default delimiter for Microsoft Excel.

Excel users can correct this as follows. Assuming that you have the
intermediate result file open in Excel, press the key combination
<COMMAND>-A. This should highlight the leftmost column of data in the
spreadsheet. After highlighting, click the Data menu item, then press the
Text to Columns icon in the ribbon at the top. When the wizard dialog
appears, make sure the Delimited radio button is highlighted. Click
Next. For the delimters, make sure that Comma is checked and that
Tab is unchecked. Then click the Finish button. The data should appear
neatly arranged into columns. Then click the File|Save As... menu item.
On the dialog that appears, set the File Format combo box selection to
Comma Separated Values (.csv). Make sure that a .csv extension appears
in the Save As edit control at the top of the dialog. Give the file a new
name if you want (but with a .csv extension), then click the Save
button.

Users of other spreadsheet software will need to consult the documentation on
how to save CSV files with a comma for the record separator.

With the file saved to disk in proper CSV format, run this command from the
ClarityNLPNative/ClarityNLP/native_setup folder to check the values:

conda activate claritynlp  # if not already active
python ./validate_results0.py --file /path/to/your/csv/file.csv





This command runs a python script to check each result. If the script finds no
errors it will print All results are valid. to stdout. If ClarityNLP is
working properly no errors should be found.




Shutdown

Perform these actions to completely shutdown ClarityNLP on your system:


	Stop the Flask webserver by entering <CTRL>-C in the flask terminal window.


	Stop the Luigi task scheduler by entering <CTRL>-C in the luigi terminal
window.


	MacOS users can stop the MongoDB database server by entering <CTRL>-C in
the MongoDB terminal window. Ubuntu users can run the command
sudo systemctl stop mongodb.


	Stop Solr by entering solr stop -all in a terminal window.


	MacOS users can stop Postgres by first clicking on the elephant icon in
the menu bar at the upper right corner of the screen. Click the stop
button on the menu that appears. Ubuntu users can run the command
sudo systemctl stop postgresql.




Alternatively, you could just terminate Flask and Luigi and keep the other
servers running if you plan to run more jobs later.

If you restart, always start Luigi before Flask, exactly as documented
above.



Final Words

An introduction to NLPQL can be found
here [https://claritynlp.readthedocs.io/en/latest/user_guide/index.html].

Additional information on how to run jobs with ClarityNLP can be found in
our
Cooking with Clarity [https://github.com/ClarityNLP/ClarityNLP/tree/master/notebooks/cooking]
sessions. These are Jupyter [https://jupyter.org/] notebooks presented in a
tutorial format. Simply click on any of the .ipynb files to open the
notebook in a Web browser. These notebooks provide in-depth explorations of
topics relevant to computational phenotyping.





          

      

      

    

  

    
      
          
            
  
Server Setup

The instructions below will get you up and running with a Docker-based
ClarityNLP instance on your server. We walk you through how to configure and
deploy a set of Docker containers comprising a complete ClarityNLP installation.
There is no need for you to separately install Solr, MongoDB, PostgreSQL, or
any of the other technologies that ClarityNLP uses.


Prerequisites


Download Source Code

git clone https://github.com/ClarityNLP/ClarityNLP







Edit Config File

Open the env.sh file for editing.

If you are using a domain name, change HOST to be your domain name.

If you are using an IP address with no domain name, do nothing to HOST.
Please read the Tip and Tricks section below if you are using an IP address with
no domain name.



Install Docker

Follow the installation instructions [https://docs.docker.com/install/#supported-platforms].

These are the recommended Docker settings for ClarityNLP. In Docker, they can
be updated via Docker > Preferences > Advanced.


	Memory: >8GB


	Disk: >256GB recommended, but can run on much less (depends on data needs)






Install Docker Compose

Follow the installation guide [https://docs.docker.com/compose/install/].




Run the Stack

The first time running it will take a couple minutes to pull the pre-built images from the
Docker Hub registry. Open a terminal at the project root and run the following:

make start-clarity





To stop the stack, run this command:

make stop-clarity







Tips & Tricks

ClarityNLP uses Let’s Encrypt to provide TLS. By default, ClarityNLP informs
the ACME to use the TLS-ALPN-01 challenge to generate and renew certificates.
When using the TLS-ALPN-01 challenge, the server running ClarityNLP must be
reachable by Let’s Encrypt through port 443.

If your server is behind a VPN and port 443 is not reachable by Let’s Encrypt,
use a DNS-01 challenge instead. Follow the instructions on configuring a DNS-01
challenge by reading the Traefik documentation [https://docs.traefik.io/v2.0/https/acme/#dnschallenge].

Let’s Encrypt does not issue certificates for public IP addresses, only domain
names [https://community.letsencrypt.org/t/certificate-for-public-ip-without-domain-name/6082/14].

If you are not using a domain name, a default certificate will be generated.
This certificate is not backed by a CA. ClarityNLP will still function, however
browsers will display a certificate warning to users.

To verify that the Docker containers are running, open a terminal and run:

docker ps





You should see a display that looks similar to this. There are 15 containers
and all should have a status of Up when the system has fully initialized:

CONTAINER ID        IMAGE                                  COMMAND                  CREATED              STATUS              PORTS                                      NAMES
55ac065604e5        claritynlp_ingest-api                  "/app/wait-for-it-ex…"   54 seconds ago       Up 24 seconds       1337/tcp                                   INGEST_API
ce2baf43bab0        claritynlp_nlp-api                     "/api/wait-for-it-ex…"   56 seconds ago       Up 54 seconds       5000/tcp                                   NLP_API
c028e60d1fab        redis:4.0.10                           "docker-entrypoint.s…"   About a minute ago   Up 56 seconds       6379/tcp                                   REDIS
4e1752025734        jpillora/dnsmasq                       "webproc --config /e…"   About a minute ago   Up 56 seconds       0.0.0.0:53->53/udp                         DNSMASQ
2cf1dd63257a        mongo                                  "docker-entrypoint.s…"   About a minute ago   Up 55 seconds       27017/tcp                                  NLP_MONGO
34385b8f4306        claritynlp_nlp-postgres                "docker-entrypoint.s…"   About a minute ago   Up 56 seconds       5432/tcp                                   NLP_POSTGRES
500b36b387b7        claritynlp_ingest-client               "/bin/bash /app/run.…"   About a minute ago   Up 56 seconds       3000/tcp, 35729/tcp                        INGEST_CLIENT
f528b68a7490        claritynlp_dashboard-client            "/bin/bash /app/run.…"   About a minute ago   Up 56 seconds       3000/tcp, 35729/tcp                        DASHBOARD_CLIENT
8290a3846ae0        claritynlp_results-client              "/bin/bash /app/run.…"   About a minute ago   Up 56 seconds       3000/tcp, 35729/tcp                        RESULTS_CLIENT
77fce3ae48fc        claritynlp_identity-and-access-proxy   "pm2-dev process.json"   About a minute ago   Up 57 seconds       6010/tcp                                   IDENTITY_AND_ACCESS_PROXY
b6610c74ec4c        claritynlp_nlp-solr                    "docker-entrypoint.s…"   About a minute ago   Up 56 seconds       8983/tcp                                   NLP_SOLR
45503f0fd389        claritynlp_identity-provider           "docker-entrypoint.s…"   About a minute ago   Up 57 seconds       5000/tcp                                   IDENTITY_PROVIDER
6dc0f7f21a48        claritynlp_nginx-proxy                 "/app/docker-entrypo…"   About a minute ago   Up 56 seconds       0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp   NGINX_PROXY
1d601b064a1c        axiom/docker-luigi:2.7.1               "/sbin/my_init --qui…"   About a minute ago   Up 57 seconds       8082/tcp                                   LUIGI_SCHEDULER
7ab4b8e19c86        mongo:3.4.2                            "docker-entrypoint.s…"   About a minute ago   Up 58 seconds       27017/tcp                                  INGEST_MONGO





The Luigi container will monitor for active tasks. Once everything initializes,
you should periodically see the following lines in the console output:

LUIGI_SCHEDULER   | 2018-10-16 19:46:19,149 luigi.scheduler INFO     Starting pruning of task graph
LUIGI_SCHEDULER   | 2018-10-16 19:46:19,149 luigi.scheduler INFO     Done pruning task graph







ClarityNLP Links

The user interface (UI) components of ClarityNLP can be accessed on your
machine by opening a web browser and entering the URLs provided below.


Dashboard

The ui_dashboard is the main user interface to ClarityNLP. It provides
controls for ingesting documents, creating NLPQL files, accessing results and
lots more.

Dashboard URL: https://<host>/dashboard



Solr Administrative User Interface

Solr provides an administrative user interface that you can use to configure
and explore your ClarityNLP Solr instance. The Apache project provides full
documentation on the admin UI which you can find
here [https://lucene.apache.org/solr/guide/6_6/using-the-solr-administration-user-interface.html].

Perhaps the most useful component of this UI is the
query tool [https://lucene.apache.org/solr/guide/6_6/query-screen.html#query-screen],
which lets you submit queries to Solr and find documents of interest. The
ClarityNLP Solr installation provides more than 7000 documents in a core called
sample.

Solr Admin Interface URL: https://<host>/solr



Luigi Task Monitor

The Luigi project provides a task monitor that displays information on
the currently running ClarityNLP job. ClarityNLP processes documents by dividing
the workload into parallel tasks that are scheduled by Luigi. The task
monitor displays the number of running tasks, how many have finished, any
failures, etc. You can update the task counts by simply refreshing the page.

Lugi Task Monitor URL: https://<host>/luigi



Ingest Client

The Ingest Client provides an easy-to-use interface to help you load new
documents into your ClarityNLP Solr instance. It also helps you map the fields
in your documents to the fields that ClarityNLP expects.

Ingest Client URL: https://<host>/ingest



Results Viewer

The Results Viewer helps you examine the results from each of your
ClarityNLP runs. It highlights specific terms and values and provides an
evaluation mechanism that you can use to score the results that ClarityNLP
found.

Clarity Results Viewer URL: https://<host>/results



NLP API

<TODO - example of how to POST an NLPQL file using Postman or curl with access tokens>






          

      

      

    

  

    
      
          
            
  
General Document Ingestion

See guide to Solr for
more information about Solr setup with ClarityNLP.

Solr has built-in APIs for ingesting documents, which are documented here [https://lucene.apache.org/solr/guide/7_3/uploading-data-with-index-handlers.html]. The simplest way is generally to use curl to upload JSON, CSV, or XML. Documents need to be pre-processed as plain text before they are uploaded into ClarityNLP.

Sample JSON upload for ClarityNLP:

curl -X POST -H 'Content-Type: application/json' 'http://localhost:8983/solr/report_core/update/json/docs' --data-binary '
 {
        "report_type":"Report Type",
        "id":"1",
        "report_id":"1",
        "source":"My Institution",
        "report_date":"1970-01-01T00:00:00Z",
        "subject":"the_patient_id_or_other_identifier",
        "report_text":"Report text here"
    }'






Upload Scripts

A collection of scripts for ingesting popular datasets (MIMIC, AACT Clinical Trials, Gleason Pathology Documents, etc.) is available here [https://github.com/ClarityNLP/Utilities].





          

      

      

    

  

    
      
          
            
  
User Guide


Overview

ClarityNLP is is a natural language processing platform designed to accelerate review of medical charts for a wide variety of purposes, including research, clinical care, quality metrics, and risk adjustment.  This guide is intended for end users of ClarityNLP.

We host webinars biweekly on Wednesday where we present and discuss topics around ClarityNLP. See upcoming and previous sessions here [https://github.com/ClarityNLP/ClarityNLP/wiki]. For more information, contact us.



User Interface



	Dashboard
	Additional Features





	Ingest Client

	Query Builder
	Loading a Query





	Results Viewer







How to Write a Query



	ClarityNLP at a Glance

	Example NLPQL Phenotype Walkthrough
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	Libraries

	Document Sets

	Term Sets
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	Running NLPQL Queries







Basic NLP Phenotype Examples
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Dashboard

The Dashboard is designed to give you a summary of your ClarityNLP instance at a glance.
The Dashboard shows you the following:


	The document types (and number of each type) stored in your Solr instance


	The NLPQL queries you have created and saved via the Query Builder


	The name, date, runtime, cohort size, and validation status of your NLPQL jobs




[image: ../../_images/claritynlp_dashboard_1.png]


To view all of your documents, results, or NLPQL queries, simply click on the expand
button at the top right of the corresponding box.
This action expands the box to full screen and provides more information on the given field.
To return to the default view, click on the collapse button located at the top right corner.

[image: ../../_images/claritynlp_dashboard_2.png]
[image: ../../_images/claritynlp_dashboard_3.png]
[image: ../../_images/claritynlp_dashboard_4.png]

Additional Features

If you would like to quickly navigate to the results of one your recent jobs,
you can click on that job’s row in the results table to go directly to the results
in the Results Viewer.

Alternatively, if you would like to open the NLPQL file of a previously saved query,
click on the respective row in the NLPQL table to open that query in the Query Builder.

You can run saved queries by pressing the play button (right-pointing arrowhead)
in the same row as the query.

You can delete a saved query by pressing the trash can icon next to the name of the query.





          

      

      

    

  

    
      
          
            
  
Ingest Client




          

      

      

    

  

    
      
          
            
  
Query Builder

The Query Builder is a tool to assist in the development of NLPQL queries.

When you open the Query Builder, it will prompt you to enter a name and version number for your NLPQL query.

NOTE: a previously-saved query cannot be overwritten. Each query must be saved with a unique version number.

[image: ../../_images/claritynlp_builder_1.png]
After you have named and versioned your query, you can begin building your query.

[image: ../../_images/claritynlp_builder_2.png]
To add a component to the query, simply click on the component you would like to add,
fill out the fields that you need, and click the corresponding add button.

[image: ../../_images/claritynlp_builder_3.png]
[image: ../../_images/claritynlp_builder_4.png]
After you finish building your query, you can click the save button just above the
dropdowns to save your query indefinitely. You can also run the query by clicking the
run button at the top right.

You can specify a limit to the number of documents processed by using an NLPQL limit statement.
The form in the next image allows you to specify a limit:

[image: ../../_images/claritynlp_builder_5.png]
If your NLPQL query passes the validity checks, you will be shown some metadata about your query:

[image: ../../_images/claritynlp_builder_7.png]
NOTE: If at any point you want to delete your query you can click the clear button at
the bottom of the text area to start over.


Loading a Query

If you navigated here from a link or from the Dashboard, your query will automatically
load into the text area.

[image: ../../_images/claritynlp_builder_6.png]
You can edit this query by clicking the edit button below the text area.

To learn more about NLPQL, please see the NLPQL Reference.





          

      

      

    

  

    
      
          
            
  
Results Viewer

The Results viewer is designed to give you a comprehensive look at the results from a ClarityNLP run.

The first screen provides a list of the 20 most recently-submitted jobs.
You can navigate the results by using the “Next page” and “Previous” buttons at the top right of the list.
Each job has many interactions associated with it, which are:


	The name of the query


	The query submission date


	The current status of the job.
If the job is not finished, the job status appears as a hyperlink that takes
you to the Luigi task viewer for that job.


	The cohort size for that particular query


	The accuracy score from an evaluation of the results


	
	Download links for the job that includes CSVs of:

	
	Results


	Cohort


	Annotations










	
	Actions that can be taken for the job, which include:

	
	Viewing the text representation of the query


	Viewing the JSON representation of the query


	Deleting the job












NOTE: Job deletion is permanent and cannot be undone.

[image: ../../_images/claritynlp_viewer_1.png]
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This list is also searchable via terms entered into the text box above the list:

[image: ../../_images/claritynlp_viewer_13.png]
To delve deeper into the results for a job, click on that job’s row in the list.
This brings you to a screen where you can see individual results from the query.
You can also see the number of events that were recognized for each result.

[image: ../../_images/claritynlp_viewer_2.png]
If no results were found for a query, a blank screen will appear.

[image: ../../_images/claritynlp_viewer_8.png]
At the top right of the page, you can cycle through the “Explore”, “Feature”, and “Cohort” views.
The Feature and Cohort views appear as scrollable tables. The Explore view is the default.

[image: ../../_images/claritynlp_viewer_3.png]
[image: ../../_images/claritynlp_viewer_11.png]
If you want to view the results for a patient, click that patient’s row in the list.
This will bring you to a screen where you can see highlighted results.

[image: ../../_images/claritynlp_viewer_10.png]
The “Next Page” and “Previous” buttons to the top right will cycle you through the various patients for that job.

At the left side of the page is a list of the NLPQL features for which results were found.
Clicking one of these features will show the results for that feature only.
All results are displayed by default.

[image: ../../_images/claritynlp_viewer_9.png]
Each result box shows the name of the relevant NLPQL feature, the definition
of that feature immediately below it, and an extract from a source document.
The extract highlights relevant terms and values associated with the feature.

In the upper right corner of each result box is a set of buttons that can be
used to evaluate ClarityNLP’s results. You can:


	Click the checkmark if the result is correct


	Click the X if the result is incorrect


	Click the notepad to enter a comment about the result




[image: ../../_images/claritynlp_viewer_6.png]
You can click on the sentence to view the complete source document:

[image: ../../_images/claritynlp_viewer_7.png]



          

      

      

    

  

    
      
          
            
  
ClarityNLP at a Glance

ClarityNLP is designed to simplify the process of analyzing unstructured data (eg. provider notes, radiology reports, pathology results, etc) to find particular data or patients from electronic medical records.

We refer to the definition of what you are trying to find as a phenotype.  Phenotypes are useful for research, clinical, quality, or payment purposes, because they allow a very explicit definition of the criteria that make up a patient of interest.  With ClarityNLP, these criteria can be shared using machine-interpretable code that can be run on any clinical dataset.

How is this accomplished?  ClarityNLP uses a query syntax called Natural Language Processing Query Language (NLPQL), based on the CQL [http://www.hl7.org/implement/standards/product_brief.cfm?product_id=400] syntax from HL7. The ClarityNLP platform provides mapping tools that allow NLPQL phenotypes to run on any dataset.

Let’s take a look at how NLPQL works.



Example NLPQL Phenotype Walkthrough

Imagine you have a dataset with thousands of clinical documents and would like to extract a particular data element.  You can create an NLPQL file to specify what you would like to extract.

Here is a basic NLPQL phenotype that extracts Temperature values from Nursing notes.

phenotype "Patient Temperatures" version "2";

include ClarityCore version "1.0" called Clarity;

documentset NursingNotes:
   Clarity.createReportTagList(["Nurse"]);

termset TemperatureTerms:
   ["temp","temperature","t"];

 define Temperature:
   Clarity.ValueExtraction({
     termset:[TemperatureTerms],
     documentset: [NursingNotes],
     minimum_value: "96",
     maximum_value: "106"
     });

 define final hasFever:
     where Temperature.value >= 100.4;





Let’s break down the NLPQL above.


Phenotype Name

phenotype "Patient Temperatures" version "2";





Every ClarityNLP phenotype definition needs a name.  We give it a name (and optionally a version) using the phenotype command.  Here, we are just declaring that our phenotype will be called “Patient Temperatures”.



Libraries

include ClarityCore version "1.0" called Clarity;





NLPQL is designed to be extensible and make it easy for developers to build new NLP algorithms and run them using the ClarityNLP platform. A common paradigm for making software extensible is the use of libraries.  Using the include command, we are saying to include the core Clarity library which has lots of handy commands and NLP algorithms built-in. The called phrase allows us to select a short name to refer to the library in the NLPQL that follows. In this case, we have selected to call it “Clarity”.



Document Sets

documentset NursingNotes:
   Clarity.createReportTagList(["Nurse"]);





Document sets are lists of document types that you would like ClarityNLP to process.  (If no document sets are created, ClarityNLP will simply analyze all documents in your repository.)  Built into the Clarity core library is the createReportTagList function, which allows you to enumerate a set of document type tags from the LOINC document ontology [https://loinc.org/document-ontology/current-version/].  Typically, these tags are assigned to your documents at the time of ingestion through use of the Report Type Mapper [https://github.com/ClarityNLP/report-type-mapper-api].

In this case, we have declared a document set called “Nursing Notes” and included in it all documents with the Nurse tag.  We could have selected another provider type (eg. Physician), a specialty type (eg. Endocrinology), a setting type (eg. Emergency Department), or a combination such as ["Physician","Emergency Department"].

documentset AmoxDischargeNotes:
     Clarity.createDocumentSet({
         "report_types":["Discharge summary"],
         "report_tags": [],
         "filter_query": "",
         "query":"report_text:amoxicillin"});





ClarityNLP provides an additional document set, createDocumentSet, which provides more control over document section, allowing users to select report tags or report types, and provides flexibility to write custom queries.



Term Sets

termset TemperatureTerms:
   ["temp","temperature","t"];





Term sets are lists of terms or tokens you would like to input into an NLP method.  You can create these lists manually (as shown in this example) or generate them based on ontologies.  Furthermore you can extend termsets with synonyms and lexical variants.

In this case, we have created a term set called “TemperatureTerms” and included three common ways temperature is  referenced in a clinical note (“temperature”, “temp”, and “t”).



Phenotype Features

Features are the clinical elements that you wish to find and analyze in order to identify your patients of interest.  Features specify an NLPQL task you’d like to run as well as optional parameters such as document sets, term sets, patient cohorts, and more.  See the NLPQL examples [https://github.com/ClarityNLP/ClarityNLP/tree/master/nlpql] to get a better sense of how different features can be created.

We have two features in our example NLPQL.  Let’s take a look at each.

define Temperature:
   Clarity.ValueExtraction({
     termset:[TemperatureTerms],
     documentset: [NursingNotes],
     minimum_value: "96",
     maximum_value: "106"
     });





Features are specified in NLPQL using the define keyword followed by a feature name and a function.  In this case, we are assigning the name “Temperature” to the output of a particular NLP method that is included in the Clarity core library called Value Extraction.  (This could just as easily have been an NLP method from another Python library or an external API using External NLP Method Integration.)

In the example, we provide the Value Extraction method with a set of parameters including our document set (“NursingNotes”), term set (“TemperatureTerms”), and min/max values to include in the temperature results. The accuray of this definition for temperature can be evaluated using the ClarityNLP validation framework, which is a feature built into the Results Viewer.

Now on to the second feature in the example:

Final Features

define final hasFever:
    where Temperature.value >= 100.4;





With this statement, we are creating a new feature called “hasFever” that includes any patients with a temperature value greater than 100.4.  There are two things to note about this syntax.



	final A phenotype may involve the creation of numerous intermediate features that are extracted by NLP processes but are not themselves the final result of the analysis.  For example, we may be interested only in patients with a fever, rather than any patient who has a temperature value recorded.  The final keyword allows us to indicate the final output or outputs of the phenotype definition.


	value Every NLP method returns a result.  The specific format and content of these results will vary by method. As a convenience, ClarityNLP returns a value parameter for most methods.  The Value Extraction method used here also returns several other parameters.   ClarityNLP is flexible in that it can take any parameter you provide and perform operations on it.  However, this will only work if the method being called returns that parameter.  Please consult the documentation for individual methods to see what parameters can be referenced.










Running NLPQL Queries

In the full guide, we will walk you through the steps of ingesting and mapping your own data.  Once in place, you will be able to run queries by hitting the nlpql API endpoint on your local server or by visiting <your_server url>:5000/nlpql.  But to run a quick test, feel free to use our NLPQL test page [https://nlpql.apps.hdap.gatech.edu/].

Next Steps

The next steps for you are to install ClarityNLP,
follow through some of our
Cooking with Clarity [https://github.com/ClarityNLP/ClarityNLP/tree/master/notebooks/cooking]
tutorials to learn how to create a full-blown ClarityNLP project, and
join our channel [https://join.slack.com/t/claritynlp/shared_invite/enQtNTE5NTUzNzk4MTk5LTFmNWY1NWVmZTA4Yjc5MDUwNTRhZTBmNTA0MWM0ZDNmYjdlNTAzYmViYzAzMTkwZDkzODA2YTJhYzQ1ZTliZTQ] on Slack.
Thanks for your interest!




          

      

      

    

  

    
      
          
            
  
Overview

Before going through these examples, make sure to review the NLPQL walkthrough to get an understanding of the general components of NLPQL.  For this set of examples, we will be focusing on extracting data relevant to congestive heart failure.

Note we recommend prepending each query with limit 100; which keeps the job small and allows you to test queries without taking up a lot of time and compute resources. Once you have developed a query and want to scale it to the full dataset, simply remove the limit statement.

All of the sample results shown here are from the de-identified MIMIC III [https://mimic.physionet.org/] dataset.



Example 1: Finding Symptoms of a Disease

In this first example, we are looking for certain symptoms of congestive heart failure likely to be found only in the clinical notes.  Specifically we are looking for orthopnea and paroxysmal nocturnal dyspnea (PND).


Using TermFinder

limit 100;

//phenotype name
phenotype "Orthopnea" version "2";

//include Clarity main NLP libraries
include ClarityCore version "1.0" called Clarity;

termset Orthopnea:
  ["orthopnea","orthopnoea","PND"];

define hasOrthopnea:
  Clarity.TermFinder({
    termset:[Orthopnea]
    });





Here we have simply defined a set of terms we are interested and lumped them into a termset called Orthopnea.  We could have named this termset anything.

The TermFinder function simply takes in that list of terms and finds all documents with these terms, without any additional filtering.  Here are example results.

[image: ../../_images/orthopnea-sample-results.png]Orthopnea Sample Results

As you can see, while the TermFinder was helpful in finding mentions of our Orthopnea terms, much of what was found were actually negative mentions (ie, the patient did not have the symptom).  So ClarityNLP lets you set a variety of constraints around TermFinder, for example limiting results to particular sections of the note or just to affirmed mentions.

define hasOrthopnea:
  Clarity.TermFinder({
    termset:[Orthopnea],
    negated:"Affirmed",
    sections:["CHIEF_COMPLAINT","HISTORY_PRESENT_ILLNESS"]
    });





But because in most situations we need to find positive mentions that are current and relevant to the patient, ClarityNLP has a convenient function called ProviderAssertion that allows you to bypass entering all the typical parameters.  Here is a simple example.



Using ProviderAssertion

limit 100;
//phenotype name
phenotype "Orthopnea" version "2";

//include Clarity main NLP libraries
include ClarityCore version "1.0" called Clarity;

termset Orthopnea:
  ["orthopnea","orthopnoea","PND"];

define hasOrthopnea:
  Clarity.ProviderAssertion({
    termset:[Orthopnea]
    });





As you can see, the results are now limited to just positive mentions.

[image: ../../_images/example-1-1-results.png]Example 1.1 Results




Example 2: Extracting Quantitative Values

In this example, we will be searching for ejection fraction values using a very simple algorithm.  Specifically, we will be looking for certain terms and subsequent values that would be typical for EF values.  There are many more sophisticated methods to find ejection fraction (e.g Kim et al [https://www.ncbi.nlm.nih.gov/pubmed/28163196]).  Our goal in this example is to provide you familiarity with the use of the ClarityNLP ValueExtraction functionality.

limit 100;
//phenotype name
phenotype "Ejection Fraction Values" version "1";

//include Clarity main NLP libraries
include ClarityCore version "1.0" called Clarity;

termset EjectionFractionTerms:
  ["ef","ejection fraction","lvef"];

define EjectionFraction:
  Clarity.ValueExtraction({
    termset:[EjectionFractionTerms],
    minimum_value: "10",
    maximum_value: "85"
    });





[image: ../../_images/example-2-1-results.png]Example 2.1 Results

If you wanted to find only low ejection fractions, you could do this in two ways.  The first is by modifying the min and max parameters.  For example:

define EjectionFraction:
  Clarity.ValueExtraction({
    termset:[EjectionFractionTerms],
    maximum_value: "30"
    });





This will filter your results to only those <30%.



Example 3: Extracting Non-Quantitative Values

In some cases you may want to extract data points that are values but not numeric.  A good example is CHF class.  Below is an example of NLPQL to pull out NYHA classifications.

limit 100;
//phenotype name
phenotype "NYHA Class" version "1";

//include Clarity  main NLP libraries
include ClarityCore version "1.0" called Clarity;

termset NYHATerms:
  ["nyha"];

define NYHAClass:
  Clarity.ValueExtraction({
    termset:[NYHATerms],
    enum_list: ["3","4","iii","iv"];
    });






Looking up more stuff

Note: we recommend prepending each query with limit 100; which keeps the job small and allows you to test queries without taking up a lot of time and compute resources. Once you have developed a query and want to scale it to the full dataset, simply remove the limit statement.





          

      

      

    

  

    
      
          
            
  
Developer Guide


For Algorithm Developers


Technical Overview



	Technologies We Use
	Docker

	Solr

	PostgresSQL

	MongoDB

	NLP Libraries (spaCy, textacy, nltk)

	Luigi

	Flask

	Redis

	Pandas

	Client-side Libraries (React, Sails)





	Solr Setup and Configuration
	Data types

	Fields

	Custom Solr Setup

	Deleting documents





	Pipelines
	Running a standalone pipeline from the command line











Utility Algorithms



	Section Tagging

	ConText

	Lexical Variants

	Sentence Tokenization

	Term-Frequency Matrix Preprocessor







Task Algorithms



	Term Finder

	Provider Assertion

	Finding Date Expressions

	Finding Time Expressions

	Finding Size Measurements

	Extracting Tumor Stage Information

	General Value Extraction

	Measurement-Subject Resolution







NLPQL Expression Evaluation Algorithms



	NLPQL Expression Evaluation







Building Custom Task Algorithms



	Custom Task Algorithms







Testing



	Testing NLP Algorithms








For App Developers


ClarityNLP Architecture

This library uses Python 3.6+.
The source code is hosted here [https://github.com/ClarityNLP/ClarityNLP].

Here’s an overview of ClarityNLP’s architecture.

[image: ClarityNLP Simplified Architecture]


Third-Party App Integration



	Third Party App Integration







FHIR Integration



	FHIR Integration










          

      

      

    

  

    
      
          
            
  
Technologies We Use

ClarityNLP is built on several popular open-source projects. In this section
we provide a brief overview of each project and describe how it is used by
ClarityNLP.


Docker

Docker [https://www.docker.com/] uses operating-system-level virtualization
to provide a means of isolating applications from each other and controlling
their access to system resources. Isolated applications run in restricted
environments called containers. A container includes the application and all
dependencies so that it can be deployed as a self-contained unit.

ClarityNLP can be deployed as a set of Docker containers. The secure
OAuth2-based server configuration assumes this deployment mechanism. You can
find out more about the ClarityNLP setup options and our use of Docker in our
setup documentation.



Solr

Apache Solr [https://lucene.apache.org/solr/] is an enterprise search
platform with many advanced features including fault tolerance, distributed
indexing, and the ability to scale to billions of documents. It is fast,
highly configurable, and supports a wide range of user customizations.

ClarityNLP uses Solr as its primary document store. Any documents that
ClarityNLP processes must be retrieved from Solr. We provide instructions on
how to ingest documents into Solr. We also provide some python scripts to help
you with common data sets. See our
document ingestion documentation
for more.



PostgresSQL

PostgreSQL [https://www.postgresql.org/] is one of the leading open-source
relational database systems, distinguished by its robust feature set,
ACID [https://en.wikipedia.org/wiki/ACID] compliance, and excellent
performance. ClarityNLP uses Postgres to store data required to manage each
NLPQL job. Postgres is also used to store a large amount of medical vocabulary
and concept data.



MongoDB

MongoDB [https://www.mongodb.com/] is a popular
NoSQL [https://en.wikipedia.org/wiki/NoSQL]  document store. A
mongo document is a JSON [https://en.wikipedia.org/wiki/JSON]
object with user-defined fields and values. There
is no rigid structure imposed on documents. Multiple documents form groups
called collections, and one or more collections comprise a database.

ClarityNLP uses Mongo to store the results that it finds. The ClarityNLP
built-in and custom tasks all define result documents with fields meaningful
to each task. ClarityNLP augments the result documents with additional
job-specific fields and stores everything in a single collection.

ClarityNLP also evaluates NLPQL expressions by
translating them into a
MongoDB aggregation [https://docs.mongodb.com/manual/aggregation/] pipeline.



NLP Libraries (spaCy, textacy, nltk)

The natural language processing libraries spaCy [https://spacy.io/] and
nltk [https://www.nltk.org/] provide implementations of the fundamental NLP
algorithms that ClarityNLP needs. These algorithms include sentence
segmentation, part-of-speech tagging, and dependency parsing, among others.
ClarityNLP builds its NLP algorithms on top of the foundation provided by
spaCy and nltk.

Textacy [https://github.com/chartbeat-labs/textacy] is a higher-level NLP
library built on spaCy. ClarityNLP uses textacy for its Clarity.ngram task and
for computing text statistics with Clarity.TextStats.



Luigi

Luigi [https://luigi.readthedocs.io/en/stable/index.html] is a python
library that manages and schedules pipelines of batch processes. A pipeline
is an ordered sequence of tasks needed to compute a result. The tasks in the
pipeline can have dependencies, which are child tasks that must run and
finish before the parents can be scheduled to run. Luigi handles the task
scheduling, dependency management, restart-on-failure, and other necessary
aspects of managing these pipelines.

The NLPQL Reference defines a set of core and custom tasks that comprise
the data processing capabilities of ClarityNLP. ClarityNLP uses Luigi to
schedule and manage the execution of these tasks.



Flask

Flask [http://flask.pocoo.org/] is a “micro” framework for building Web
applications. Flask provides a web server and a minimal set of core features,
as well as an extension mechanism for including features found in more
comprehensive Web frameworks.

The ClarityNLP component that provides the NLP Web APIs is built with
Flask.



Redis

Redis [https://redis.io/] is an in-memory key-value store that is typically
used as a fast cache for frequently-accessed data. The values mapped to each
key can either be strings or more complex data structures. Redis supports many
advanced features such as partitioning and time-based key expiration.

ClarityNLP uses Redis as a fast query cache.



Pandas

Pandas [https://pandas.pydata.org/] is a python library for data analysis,
with particular strengths in manipulating tabular and labeled data. It provides
data structures and methods for doing operations that one would typically use a
spreadsheet for. It provides a powerful I/O library and integrates fully with
the python machine learning, data analysis, and visualization stack.

ClarityNLP uses pandas for some I/O operations and for various forms of
data manipulation.



Client-side Libraries (React, Sails)

TBD





          

      

      

    

  

    
      
          
            
  
Solr Setup and Configuration


Data types

We use standard Solr data types with one custom data type, searchText.  searchText is a text field, tokenized on spaces, with filtering to support case insensitivity.



Fields

All documents in ClarityNLP are stored in Solr. These are the minimal required fields:

 {
        "report_type":"Report Type",
        "id":"1",
        "report_id":"1",
        "source":"My Institution",
        "report_date":"1970-01-01T00:00:00Z",
        "subject":"the_patient_id_or_other_identifier",
        "report_text":"Report text here"
    }





id and report_id should be unique in the data set, but can be equal. report_text should be plain text. subject is generally the patient identifier, but could also be some other identifier, such as drug_name.
source is generally your institution or the name of the document set.

Additional fields can be added to store additional metadata. The following fields are allowable as dynamic fields:


	*_section (searchText); e.g. past_medical_history_section (for indexing specific sections of notes)


	*_id (long) e.g.doctor_id (any other id you wish to store)


	*_ids (long, multiValued) e.g. medication_ids (any other id as an array)


	*_system (string) e.g. code_system (noting any system values)


	*_attr (string) e.g.clinic_name_attr (any single value custom attribute)


	*_attrs (string, multiValued) e.g. insurer_names (any multi valued custom attribute)






Custom Solr Setup

This should be completed for you if you are using Docker. However, here are the commands to setup Solr.


	Install Solr [https://cwiki.apache.org/confluence/display/solr/Installing+Solr]


	Setup custom tokenized field type:




curl -X POST -H 'Content-type:application/json' --data-binary '{
      "add-field-type" : {
         "name":"searchText",
         "class":"solr.TextField",
         "positionIncrementGap":"100",
         "analyzer" : {
            "charFilters":[{
               "class":"solr.PatternReplaceCharFilterFactory",
               "replacement":"$1$1",
               "pattern":"([a-zA-Z])\\\\1+" }],
            "tokenizer":{
               "class":"solr.WhitespaceTokenizerFactory" },
            "filters":[{
               "class":"solr.WordDelimiterFilterFactory",
               "preserveOriginal":"0" },
               {"class": "solr.LowerCaseFilterFactory"
               }]}}
    }' http://localhost:8983/solr/report_core/schema






	Add standard fields (Solr 6):




curl -X POST -H 'Content-type:application/json' --data-binary '{
  "add-field":{"name":"report_date","type":"date","indexed":true,"stored":true,"default":"NOW"},
  "add-field":{"name":"report_id","type":"string","indexed":true,"stored":true},
  "add-field":{"name":"report_text","type":"searchText","indexed":true,"stored":true,"termPositions":true,"termVectors":true,"docValues":false,"required":true},
  "add-field":{"name":"source","type":"string","indexed":true,"stored":true},
  "add-field":{"name":"subject","type":"string","indexed":true,"stored":true},
  "add-field":{"name":"report_type","type":"string","indexed":true,"stored":true}
}' http://localhost:8983/solr/report_core/schema






	Add standard fields (Solr 7 and later):




curl -X POST -H 'Content-type:application/json' --data-binary '{
  "add-field":{"name":"report_date","type":"pdate","indexed":true,"stored":true,"default":"NOW"},
  "add-field":{"name":"report_id","type":"string","indexed":true,"stored":true},
  "add-field":{"name":"report_text","type":"searchText","indexed":true,"stored":true,"termPositions":true,"termVectors":true,"docValues":false,"required":true},
  "add-field":{"name":"source","type":"string","indexed":true,"stored":true},
  "add-field":{"name":"subject","type":"string","indexed":true,"stored":true},
  "add-field":{"name":"report_type","type":"string","indexed":true,"stored":true}
}' http://localhost:8983/solr/report_core/schema






	Add dynamic fields (Solr 6):




curl -X POST -H 'Content-type:application/json' --data-binary '{
  "add-dynamic-field":{"name":"*_section","type":"searchText","indexed":true,"stored":false},
  "add-dynamic-field":{"name":"*_id","type":"long","indexed":true,"stored":true},
  "add-dynamic-field":{"name":"*_ids","type":"long","multiValued":true,"indexed":true,"stored":true},
  "add-dynamic-field":{"name":"*_system","type":"string","indexed":true,"stored":true},
  "add-dynamic-field":{"name":"*_attr","type":"string","indexed":true,"stored":true},
  "add-dynamic-field":{"name":"*_attrs","type":"string","multiValued":true,"indexed":true,"stored":true}
}' http://localhost:8983/solr/report_core/schema






	Add dynamic fields (Solr 7 and later):




curl -X POST -H 'Content-type:application/json' --data-binary '{
  "add-dynamic-field":{"name":"*_section","type":"searchText","indexed":true,"stored":false},
  "add-dynamic-field":{"name":"*_id","type":"plong","indexed":true,"stored":true},
  "add-dynamic-field":{"name":"*_ids","type":"plongs","multiValued":true,"indexed":true,"stored":true},
  "add-dynamic-field":{"name":"*_system","type":"string","indexed":true,"stored":true},
  "add-dynamic-field":{"name":"*_attr","type":"string","indexed":true,"stored":true},
  "add-dynamic-field":{"name":"*_attrs","type":"strings","multiValued":true,"indexed":true,"stored":true}
}' http://localhost:8983/solr/report_core/schema






	Ingest data






Deleting documents

These commands will permanently delete your documents; use with caution.

Delete documents based on a custom query:

curl "http://localhost:8983/solr/report_core/update?commit=true" -H "Content-Type: text/xml" --data-binary '<delete><query>source:"My Source"</query></delete>'





Delete all documents:

curl "http://localhost:8983/solr/report_core/update?commit=true" -H "Content-Type: text/xml" --data-binary '<delete><query>*:*</query></delete>'









          

      

      

    

  

    
      
          
            
  
Pipelines

Pipelines are the lowest level type jobs that can be run with Luigi and ClarityNLP.
Generally they have one purpose such as finding provider assertions or extracting temperature measurements.
NLPQL is generally composed of one or more pipelines, so usually pipelines don’t need to be run standalone, but can be for testing purposes.
They can be run from the command line through Luigi (see below), or via POSTing pipeline JSON to the endpoint http://nlp-api:5000/pipeline.


Running a standalone pipeline from the command line

PYTHONPATH='.' luigi --module luigi_pipeline NERPipeline --pipeline 1 --job 1234 --owner user 









          

      

      

    

  

    
      
          
            
  
Section Tagging


Overview

The section tagger ingests clinical documents and uses textual clues to
partition the documents into sections. Sections consist of groups of
sentences sharing a common purpose such as “History of Present Illness”,
“Medications”, or “Discharge Instructions”. Effective section tagging
can reduce the amount of text processed for NLP tasks. This
document describes the ClarityNLP section tagger and how it works.

The starting point for the section tagger is the open-source SecTag
database of J. Denny and colleagues 1.


Source Code

The source code for the section tagger is located in
nlp/algorithms/sec_tag.
The file sec_tag_db_extract.py extracts data from the SecTag database,
builds the SecTag concept graph (concept_graph.py), and generates data
files required by the section tagger for its operation. These files are written
to the data folder. The file section_tagger.py contains the code for
the section tagger itself.

The section tagger can also run interactively from a command line and process
a file of health records in JSON format. The file sec_tag_file.py provides
a command-line interface to the section tagger. Help can be obtained by running
the file with this command:  python3 ./sec_tag_file.py. This interactive
application writes results (input file with tag annotations) to stdout.



SecTag Database

The section tagger requires three input files for its operation, all of which
can be found in the nlp/algorithms/sec_tag/data folder. These files are
concepts_and_synonyms.txt, a list of clinical concepts and associated
synonyms; graph.txt, a list of graph vertices and associated codes
for the concept graph, and normalize.py, which contains a map of
frequently-encountered synonyms and their “normalized” forms 2.

Generation of these files requires an installation of the SecTag database. The
SecTag SQL files were originally written for MySQL, so that database server
will be assumed here. These files do not need to be generated again unless
new concepts and/or synonyms are added to the SecTag database.

To populate the database, install MySQL and create a root account. Start the
MySQL server, log in as root and enter these commands, which creates a user
named “sectag” with a password of “sectag”:

	1
2
3
4

	   CREATE USER 'sectag'@'localhost' IDENTIFIED BY 'sectag';
   CREATE DATABASE SecTag_Terminology;
   GRANT ALL ON SecTag_Terminology.* TO 'sectag'@'localhost';
   GRANT FILE ON *.* TO 'sectag'@'localhost';








The user name and the password can be changed, but the database connection
string at the end of sec_tag_db_extract.py will need to be updated to
match.

After running these commands, log out as the MySQL root user.

Next, download the sec_tag.zip file from the link in 1. Unzip the file
and find SecTag_Terminology.sql.

Populate the database as the sectag user with this command, entering the
password ‘sectag’ when prompted:

mysql -p -u sectag SecTag_Terminology < SecTag_Terminology.sql





The SecTag database name is “SecTag_Terminology”. Additional information on
the contents of the database can be found in 1 and 2.



Concepts and Synonyms

The section tagger operates by scanning the report text and recognizing
synonyms for an underlying set of concepts. The synonyms recognized in the text
are mapped to their associated concepts and the document sections are tagged
with the concepts. The SecTag database provides an initial set of concepts and
synonyms which ClarityNLP expands upon.

For example, concept 158 “history_present_illness” has synonyms
“indication”, “clinical indication”, and “clinical presentation”, among
others.  The synonyms represent the various orthographic forms by which the
concept could appear in a clinical note.

The code in sec_tag_db_extract.py extracts the concepts and synonyms from
the SecTag database; adds new synonyms to the list; adds a few new concepts;
corrects various errors occurring in the SecTag database, and writes output to
the nlp/algorithms/sec_tag/data folder. Run the extraction code with
this command:

python3 ./sec_tag_db_extract.py





Each concept has a “treecode”, which is a string consisting of integers
separated by periods, such as 6.41.149.234.160.165 (the treecode for the
concept “chest_xray”). The numbers encode a path through the
concept graph from a small set of general concepts to a much larger set of
very specific leaf node concepts. The code 6 represents the concept
“objective_data”, which is very general and broad in scope. The code 6.41
represents the concept “laboratory_and_radiology_data”, which is a form of
“objective_data”, but more specific. The code 6.41.149 represents the concept
“radiographic_studies”, which is a more specific form of
“laboratory_and_radiology_data”. The concepts increase in specificity as the
treecodes increase in length. Each node in the concept graph has a unique
code that represents a path through the graph from the highest-level concepts
to it.



SecTag Errors

There are a few errors in the SecTag database. Two concepts are misspelled.
These are concept 127, “principal_diagnosis”, misspelled as
“principle_diagnosis”, and concept 695, “level_of_consciousness”, misspelled as
“level_of_cousciousness”. ClarityNLP’s db extraction code corrects both of these
misspellings.

Concept 308, “sleep_habits”, has as concept text “sleep_habits,_sleep”. The
extraction program converts this to just “sleep_habits”.

Concept 2921, “preoperative_medications” is missing a treecode. A closely
related concept, number 441 “postoperative_medications” has treecode
5.37.106.127 and no children. This concept hierarchy resolves to:

patient_history:          5
medications:              5.37
medications_by_situation: 5.37.106
preoperative_medications: 5.37.106.127





Using this hierarchy as a guide, the extraction program assigns the
treecode 5.37.106.500 to the concept “preoperative_medications”.

The final error that the extraction program corrects is for concept 745,
“appearance”.  This entry has an invalid treecode and is an isolated concept
at level 10. This strange entry is skipped entirely and is not written to the
output files.

Each concept and synonym has a unique integer identifier. The values of these
identifiers are all less than 500 for concepts and 6000 for synonyms. The new
concepts added by the extraction program begin numbering at 500 and the new
synonyms at 6000.

The concepts added by ClarityNLP are:







	Concept Name

	Treecode





	renal_course

	5.32.77.79.18.500



	preoperative_medications

	5.37.106.500



	nasopharynx_exam

	6.40.139.191.120.500



	hypopharynx_exam

	6.40.139.191.120.501



	xray_ankle

	6.41.149.234.160.167.92.500



	computed_tomography

	6.41.149.234.162.500



	cerebral_ct

	6.41.149.234.162.500.1



	thoracic_ct

	6.41.149.234.162.500.2



	abdominal_ct

	6.41.149.234.162.500.3



	renal_and_adrenal_ct

	6.41.149.234.162.500.4



	extremities_ct

	6.41.149.234.162.500.5



	nonradiographic_studies

	6.41.500



	types_of_nonradiographic_studies

	6.41.500.1



	nonradiographic_contrast_studies

	6.41.500.1.1



	magnetic_resonance_imaging

	6.41.500.1.1.1



	cerebral_mri

	6.41.500.1.1.1.1



	thoracic_mri

	6.41.500.1.1.1.2



	abdominal_mri

	6.41.500.1.1.1.3



	renal_and_adrenal_mri

	6.41.500.1.1.1.4



	extremities_mri

	6.41.500.1.1.1.5



	magnetic_resonance_angiography

	6.41.500.1.1.2



	cerebral_mra

	6.41.500.1.1.2.1



	thoracic_mra

	6.41.500.1.1.2.2



	abdominal_mra

	6.41.500.1.1.2.3



	renal_and_adrenal_mra

	6.41.500.1.1.2.4



	extremities_mra

	6.41.500.1.1.2.5









Algorithm


Initialization and Sentence Tokenization

The section tagger begins its operation with an initialization phase in which
it loads the data files mentioned above and creates various data structures.
One data structure is a mapping of synonyms to concepts, used for fast text
lookups. This is a one-to-many mapping since a given synonym
can be associated with multiple concepts.

After initialization completes, the
section tagger reads the report text and runs the NLTK 3 sentence tokenizer
to partition the text into individual sentences. For narrative sections
of text the sentence tokenizer performs well. For sections of text containing
vital signs, lab results, and extensive numerical data the tokenizer
performance is substantially worse. Under these conditions a “sentence” often
comprises large chunks of report text spanning multiple sentences and sentence
fragments.



Synonym Matching

The section tagger scans each sentence and looks for strings indicating the
start of a new section. Clinical note sections tend to be delimited by one
or more keywords followed by a termination character. The terminator is
usually a colon “:”, but dashes and double-dashes also appear as delimeters.
The section tagger employs various regular expressions that attempt to
match all of these possibilities. The winning match is the longest string of
characters among all matches. Any overlapping matches are merged, if possible,
prior to deciding the winning match. Each match represents the possible start
of a new report section.

For each match, which consists of one or more words followed by a terminator,
the section tagger extracts the matching text and performs a
series of validity checks on it. Dash-terminated matches are checked to verify
that they do not end in the middle of a hyphenated word. They are also checked
to ensure that they do not terminate within a hyphenated lab result, such as
SODIUM-135. Any such matches are discarded. Several other tests are
performed as well.

If any matches survive these checks, the terminating characters and possible
leading newlines are stripped from the matching text, and any bracketed data
(such as anonymized dates) is removed. The remaining text then gets converted
to lowercase and searched for concept synonyms and thus candidate headers.

The candidate header discovery processes proceeds first by trying an exact
match to the candidate text string. The text itself (after lowercasing) becomes
the lookup key for the synonym map built during initialization. If an exact
match is found, the associated concept(s) are looked up and inserted into the
list of candidate concepts for this portion of report text.

If the exact match fails, the section tagger splits the text into individual
words and tries to match the longest sequence of words, if any, to a known
synonym. It proceeds to do this by removing words from each end of the
word list. It first tries a match anchored to the right, removing words
one-by-one from the left. Any matches found are resolved into concepts and
added to the candidate concept list. If no matches are found, the section
tagger tries again, this time with the matches anchored from the left, and
words removed one-by-one from the right. If still no matches are found,
the word list is pruned of stop words and the remaining words replaced by
their “normalized” forms. The sequence of match attempts repeats on this
new word list, first with an exact match, then one anchored right, then one
anchored left. If all of these match attempts fail, section tagger gives up
and concludes that the text does not represent the start of a new section.

If at least one match attempt succeeds, the synonyms are resolved into
concepts via map lookup and returned as candidate concepts for a new section
label. If there is only one candidate concept as the result of this process,
that concept becomes the header for the next section of text. If two or more
candidate concepts remain, the section tagger employs an ambiguity resolution
process to decide on the winning concept. The ambiguity resolver uses a
concept stack to guide its decisions, which we describe next.



The Concept Stack

The sections in a clinincal note tend to be arranged as flattened hierarchies
extending over several consecutive sections. For instance, in a discharge
report one might encounter a section labeled GENERAL_EXAM, followed by a
section labeled HEAD_AND_NECK_EXAM, which represents a more specific type of
general exam. This section could be followed by a section labeled EYE_EXAM,
which is an even more specific type of head and neck exam. Although these
sections would be listed sequentially in the report, they naturally form a
hierarchy of EXAM concepts proceeding from general to specific. Other
section groups in the report exhibit the same characteristics.

A data structure for managing hierarchies such as this is a stack. The section
tagger manages a “concept stack” as it processes the report text. It uses
the stack to identify these natural concept groups, to keep track of the scope
of each, and to resolve ambiguities as described in the previous section.

The specificity of a concept is determined by its graph treecode. The longer
the treecode, the more specific the concept. Two concepts with identical length
treecodes have the same degree of specificity.

Each time the section tagger recognizes a concept C it updates the stack
according to this set of empirically-determined rules:

Let T be the concept at the top of the stack.


	If C is a more specific concept than T, push C onto the stack.
In other words keep pushing concepts as they get more specific.


	If C has the same specificity as T, pop T from the stack and push C.
If two concepts have the same specificity, there is no a priori reason
to prefer one vs. the other, so take the most recent one.


	If C is more general than T, pop all concepts from the stack that have
specificity >= C. In other words, pop all concepts more specific than C,
since C could represent the start of a new concept hierarchy.




Thus the section tagger pushes concept C onto the stack if it is more specific
than concept T. It pops concepts from the stack until concept T is at the
same level of specificity (or less specific) than C. The concepts in the stack
represent the full set of open concept scopes at any stage of processing.



Concept Ambiguity Resolution

The section tagger uses the concept stack to select a single concept from
a list of candidates, such the candidate concepts produced by the synonym
matching process described above. The basic idea is that a concept should
be preferred as a section label if it posesses the nearest common ancestor
among all concepts in the concept stack. A concept is preferable as a section
label if it is “closer” to those in the concept stack than all other
candidates. Here the distance metric is the shortest path between the
two concept nodes in the concept graph.

The concept ambiguity resolution process proceeds as follows. Let L be a list
of concepts and let S be the concept stack. For each concept C in stack S,
starting with the concept at the stack top:


	For all candidate concepts in L, find the nearest common ancestor to C.


	If there is a single ancestor A closer than all others, choose A as
the current winner. Save A in the best_candidates list. Move one
level deeper in the stack and try again.


	If multiple ancestors are closer than the others, save these as
best_candidates if they are closer than those already present in
best_candidates. Move one level deeper in the stack and try again.


	If all ancestors are at the same level in the concept graph (have the
same specificity), there is no clear winner. Move one element deeper
in the stack and try again.








This process continues until all elements in the stack have been examined.
If one winner among the candidates in L emerges from this procedure, it is
declared the winning concept and it is used for the section label.

If there is no single winning concept:


	If there are any best_candidate concepts:


	Select the most general concept from among these as the winner.


	If all best_candidate concepts have the same specificity, select the
first of the best candidates as the winner.






	Otherwise, take the most general concept from those in L, if any.


	Otherwise, declare failure for the ambiguity resolution process.







Example

An example may help to clarify all of this. Consider this snippet
of text from one of the MIMIC discharge notes:

...CV:  The patient's vital signs were routinely monitored, and
was put on vasopressin, norepinephrine and epinephrine during her
stay to maintain appropriate hemodynamics. Pulmonary:  Vital
signs were routinely monitored. She was intubated and sedated
throughout her admission, and her ventilation settings were
adjusted based on ABG values...





As the section tagger scans this text it finds a regex match for the text
Pulmonary:. No additional words match at this point, since this text
starts a new sentence. As described above, the section tagger removes the
terminating colon and converts the text to lowercase, producing
pulmonary.  It then checks the synonym map for any concepts associated
with the text pulmonary. It tries an exact match first, which succeeds
and produces the following list of candidate concepts and their treecodes
(the list L above):

L[0]  PULMONARY_COURSE         [5.32.77.87]
L[1]  PULMONARY_FAMILY_HISTORY [5.34.79.103.71]
L[2]  PULMONARY_REVIEW         [5.39.132]
L[3]  PULMONARY_EXAM           [6.40.139.195.128]
L[4]  PULMONARY_PLAN           [13.51.157.296]





These are the candidate concepts in list L. The concept stack S at this
point is:

S[0]  CARDIOVASCULAR_COURSE  [5.32.77.75]
S[1]  HOSPITAL_COURSE        [5.32]





How does the section tagger use S to choose the “best” section tag from
concepts in L?

To begin, the ambiguity resolution process starts with the concept at the
top of the stack, CARDIOVASCULAR_COURSE. It proceeds to compute the
ancestors shared by this concept and each concept in L. It hopes to find a
single most-specific ancestor concept shared between elements of L and S.
This is the nearest common ancestor concept for those in L and S.

The nearest common ancestor can be computed from the treecodes. If two
treecodes share a common initial digit sequence they have a common ancestor.
The treecode of the nearest common ancestor is the longest shared
treecode prefix string. If two treecodes have no common prefix string
they have no common ancestor. The nearest common ancestor for concept A
with treecode 6.40.37 and concept B with treecode
6.40.21 is that unique concept with treecode 6.40, since 6.40 is the longest
shared prefix string for concepts A and B.

Computing the common ancestors of the concept at the top of the stack,
CARDIOVASCULAR_COURSE [5.32.77.75], and each concept in L gives:

S[0] & L[0]: [5.32.77]
S[0] & L[1]: [5]
S[0] & L[2]: [5]
S[0] & L[3]: [ ]
S[0] & L[4]: [ ]





Concepts S[0] and L[0] share the longest prefix string. Concepts
L[3] and L[4] share no common ancestor with concept S[0], as the
empty brackets indicate. The section tagger declares concept
L[0] PULMONARY_COURSE to be the winner of this round, since it has the
longest shared prefix string with concept S[0], indicating that it is
closer to S[0] than all other candidate concepts. It then proceeds to the
next level in the stack and repeats the procedure, generating these results:

S[1] & L[0]: [5.32]
S[1] & L[1]: [5]
S[1] & L[2]: [5]
S[1] & L[3]: [ ]
S[1] & L[4]: [ ]





The winner of this round is also L[0], indicating that the node with
treecode 5.32 is the nearest common ancestor for concepts
S[1] HOSPITAL_COURSE and L[0] PULMONARY_COURSE. This common ancestor
has a shorter treecode than that found in the initial round, indicating that
it is located at a greater distance in the concept graph, so the results of
this round are discarded.

All elements of the concept stack have been examined at this point, and there
is is a single best candidate concept, L[0] PULMONARY_COURSE. The section
tagger declares this concept to be the winner and labels the section with
the tag PULMONARY_COURSE. Thefore concept L[0] PULMONARY_COURSE
shares the nearest common ancestor with those in S, and it is the most
appropriate concept with which to label the Pulmonary: section.

At this point concept C, which is the most recently-recognized concept,
becomes PULMONARY_COURSE [5.32.77.87]. The concept T at the top of the
stack is CARDIOVASCULAR_COURSE  [5.32.77.75]. Since concepts C and T
have identical treecode lengths, they have the same specificity. Following
the stack manipulation rules described above, the section tagger pops the
stack and pushes C, which yields this result for the concept stack:

S[0]  PULMONARY_COURSE  [5.32.77.87]
S[1]  HOSPITAL_COURSE   [5.32]





After these stack adjustments the section tagger resumes scanning and the
process continues.
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ConText


Overview

ConText is based on the algorithm developed by Chapman, et al. 1 2 to determine negation, experiencer and temporality modifiers around clinical concepts.
The algorithm uses rules, and text windows (or spans) along with an input concept to determine the 3 ConText types. Resulting values from ConText can be any of the following, where the bolded item notes the default.


Temporality


	Recent


	Historical


	Hypothetical






Experiencer


	Patient


	Other






Negation


	Affirmed


	Negated


	Possible







Source Code

The source code is found in nlp/algorithms/context/context.py.


Concepts

ConText has a pre-defined set of concepts for each ConText type. They can be found at nlp/algorithms/context/data.
Each ConText keyword has a category which either indicates it as a candidate for a ConText type, a pseudo-candidate (which would be excluded), or a term that indicates a change in the sentence phrase, such as a conjunction (which would close a ConText window).




Algorithm

We have a Python implementation of the ConText algorithm.
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Lexical Variants


Overview

ClarityNLP uses the term lexical variants to mean either plurals,
verb inflections, or both. Pluralization is a familiar concept and is assumed
to be self-explanatory. English verbs have four inflected forms (i.e. a
different ending depending on use), which are as follows, using the verb
‘walk’ as an example:







	Description

	Inflected Form





	bare infinitive (base form)

	walk



	3rd person singular present

	walks



	present participle

	walking



	past tense (preterite)

	walked



	past participle

	walked






Regular English verbs have inflected forms that can be computed from
relatively straightforward rules (but there are many exceptions). Irregular
verbs have inflected forms for the past tense and/or past participle that
violate the rules.

ClarityNLP includes a pluralizer and a verb inflector that attempt to compute
the plurals and inflected forms of English words. The verb inflector ignores
archaic forms and focuses primarily on contemporary American English.



Plurals

The ClarityNLP pluralizer generates plural forms of words and phrases. Several
functions are offered depending on whether the part of speech of the term to
be pluralized is known. The source code for the pluralizer can be found in
nlp/algorithms/vocabulary/pluralize.py. The pluralizer is mainly a wrapper
around the Python port of Damian Conway’s well-known inflect module 1.
An error-correction mechanism has also been incorporated to improve the module’s
performance on medical text.


Inputs

A single string, representing the word or phrase to be pluralized.



Outputs

A list of strings containing all known plural forms for the input.



Functions

The functions provided by the pluralize module are (all arguments are
strings):

plural_noun(noun)
plural_verb(verb)
plural_adj(adjective)
plural(text_string)





Use the more specific functions if the part of speech of the input text is
known. Use plural if nothing is known about the text.




Verb Inflections

The verb inflector module computes verb inflections from a given verb in base
form. The base form of a verb is also known as “plain form”, “dictionary form”,
“bare infinitive form”, or as the “principal part” of the verb. Here is a list
of some common verbs and their base forms:







	Verb

	Base Form





	running

	run



	walks

	walk



	eaten

	eat



	were

	be






It is not possible to unambiguously compute the base form of a verb from an
arbitrary inflected form. Observe:







	Verb

	Possible Base Forms





	clad

	clad (to cover with material), clothe (to cover with clothes)



	cleft

	cleave (to split), cleft (to separate important parts of a clause)



	fell

	fell (to make something fall), fall (to take a tumble)



	lay

	lay (to set down), lie (to rest on a surface)






The only way to unambiguously recover the base form from an arbitrary
inflection is to supply additional information such as meaning, pronounciation,
or usage.

Lemmatizers attempt to solve this problem, but with decidedly mixed results.
Neither the NLTK WordNet lemmatizer nor the Spacy lemmatizer worked reliably
enough on this module’s test data to allow users to input verbs in arbitrary
inflections. Lemmatization is still an area of active NLP research, so these
results are not necessarily surprising.

Therefore, for all of these reasons, the ClarityNLP verb inflector requires
the input verb to be provided in base form.



Source Code

The source code for the verb inflector is located in
nlp/algorithms/vocabulary/verb_inflector.py. Supporting files in the same
directory are inflection_truth_data.txt, irregular_verbs.py, and the
files in the verb_scraper directory. The purpose of the supporting files
and software will be described below.


Inputs

The entry point to the verb inflector is the get_inflections function,
which takes a single string as input. The string is a verb in base form as
described above.



Outputs

The get_inflections function returns all inflections for the verb whose
base form is given. The inflections are returned as a five-element list,
interpreted as follows:







	Element

	Interpretation





	0

	[string] the base form of the verb



	1

	[list] third-person singular present forms



	2

	[list] present participle forms



	3

	[list] simple past tense (preterite) forms



	4

	[list] past participle forms






The lists returned in components 1-4 are all lists of strings. Even if only
a single variant exists for one of these components, it is still returned
as a single-element list, for consistency.



Example

	1
2
3
4
5

	inflections = verb_inflector.get_inflections('outdo')
# returns ['outdo',['outdoes'],['outdoing'],['outdid'],['outdone']]

inflections = verb_inflector.get_inflections('be')
# returns ['be',['is'],['being'],['was','were'],['been']]











Algorithms

The verb inflector uses different algorithms for the various inflections. A
high-level overview of each algorithm will be presented next. The verb
inflector uses a list of 558 irregular verb preterite and past participle
forms scraped from Wikipedia and Wiktionary to support its operations.

It should be stated that the rules below have been gleaned from various
grammar sources scattered about the Internet. Some grammar sites present
subsets of these rules; others present some rules without mentioning
any exceptions; and other sites simply present incorrect information. We
developed these algorithms iteratively, over a period of time, adjusting for
exceptions and violations as we found them. This is still a work in progress.


Algorithm for the Third-Person Singular Present

The third-person singular present can be formed for most verbs, either regular
or irregular, by simply adding an s character to the end. Some highly
irregular verbs such as be and a few others are stored in a list
of exceptions. If the base form of the verb appears in the exception list,
the verb inflector performs a simple lookup and returns the result.

If the base form is not in the exception list, the verb inflector checks to
see if it ends in a consonant followed by y. If so, the terminating y
is changed to an i and an es is added, such as for the verb try,
which has the third-person singular present form tries.

If the base form instead ends in a consonant followed by o, an es is
appended to form the result. An example of such a verb would be echo, for
which the desired inflection is echoes.

If the base form has neither of these endings, the verb inflector checks to
see if it ends in a sibilant sound. The sibilant sounds affect the spelling
of the third-person singular inflection in the presence of a silent-e ending 2.
The CMU pronouncing dictionary 3 is used to detect the presence of sibilant
sounds. The phonemes for these sounds are based on the ARPAbet 4 phonetic
transcription codes and appear in the next table:







	Sibilant Sound

	Phoneme





	voiceless alveolar sibilant

	S



	voiced alveolar sibilant

	Z



	voiceless postalveolar fricative

	SH



	voiced postalveolar fricitave

	ZH



	voiceless postalveolar affricate

	CH



	voiced postalveolar affricate

	JH






If the base form ends in a sibilant sound and has no silent-e ending, an es
is appended to form the desired inflection. Otherwise, an s is appended to
of the base form and returned as the result.



Algorithm for the Present Participle

The verb inflector keeps a dictionary of known exceptions to the rules for
forming the present participle. Most of these exceptional verbs are either not
found in the CMU pronouncing dictionary, or are modal verbs, auxiliaries, or
other irregular forms. Some verbs also have multiple accepted spellings for the
present participle, so the verb inflector keeps a list of these as well. If the
base form of the given verb appears as an exception, a simple lookup is
performed to generate the result.

If the base form of the verb is not a known exception, the verb inflector
determines whether the base form ends in ie. If it does, the ie is
changed to ying and appended to the base form to generate the result. An
example of such a verb is tie, which has the form tying as the present
participle.

Next the verb inflector checks the base form for an ee, oe, or ye
ending. If one of these endings is present, the final e is retained, and
ing is appended to the base form and returned as the result.

If the base form ends in vowel-l, British spelling tends to double the final
l before appending ing, but American spelling does not. For many verbs both
the British and American spellings are common, so the verb inflector generates
both forms and returns them as the result. There appears to be one exception to
this rule, though. If the vowel preceding the final l is an i, the rule
does not seem to apply (such as for the verb sail, whose present participle
form is sailing, not sailling).

If none of these tests succeed, the verb inflector checks for pronounciation-
dependent spellings using the CMU pronouncing dictionary. If the base form has
a silent-e ending, the final e is dropped and ing is appended to the
base verb to form the result, unless the base form is a known exception to this
rule, in which case the final e is retained.

The verb inflector next checks for a pronunciation-dependent spelling caused by
consonant doubling. The rules for consonant doubling are presented in the next
section. The verb inflector doubles the final consonant if necessary, appends
ing, and returns that as the result.

If none of the tests succeeds, the verb inflector appends ing to the base
form and returns that as the result.



Algorithm for Consonant Doubling

If the base form of the verb ends in c, a k should generally be
appended prior to the inflection ending. There are a few exceptions to this
rule that the verb inflector checks for.

If the base form of the verb ends in two vowels followed by a consonant, the
rule is generally to not double the final consonant. One exception to this rule
is if the first vowel is a u preceded by q. In this case the u is
pronounced like a w, so the qu acts as if it were actually qw. This
gives the word an effective consonant-vowel-consonant ending, in which case the
final consonant is doubled. An example of this would be the verb equip,
which requires a doubled p for inflection (equipping, equipped, etc.).

If the base form of the verb has a vowel-consonant ending, and if the consonant
is not a silent-t, then the final consonant is doubled for single syllable
verbs. If the final syllable is stressed, the final consonant is also doubled.
Otherwise the final consonant is not doubled prior to inflection.



Algorithm for the Simple Past Tense

If the verb is irregular, its past tense inflection cannot be predicted, so
the verb inflector simply looks up the past tense form in a dict and returns
the result. A lookup is also performed for a small list of regular verbs that
are either known exceptions to the rules, or which have multiple accepted
spellings for the past tense forms.

If the verb is regular and not in the list of exceptions, the verb inflector
checks the base form for an e ending. If the verb ends in e, a d is
appended and returned as the result.

If the base form instead ends in a consonant followed by y, the y is
changed to i and ed is appended and returned as the result.

If the base form ends in a vowel followed by l, both the American and
British spellings are returned, as described above for the present participle.
The British spelling appends led to the base form, while the American
spelling only appends ed.

If the final consonant requires doubling, the verb inflector appends the proper
consonant followed by ed and returns that as the result.

Otherwise, ed is appended to the base form and returned as the result.



Algorithm for the Past Participle

The past participle for irregular verbs is obtained by simple lookup. The past
participle for a small number of regular verbs with multiple accepted
spellings is also obained via lookup. Otherwise, the past participle for
regular verbs is equivalent to the simple past tense form.




Testing the Verb Inflector

The file verb_inflector.py includes 114 test cases that can be run via
the --selftest command line option. A more extensive set of 1364 verbs
and all inflected forms can be found in the file inflection_truth_data.txt.
This list consists of the unique verbs found in two sets: the set of irregular
English verbs scraped from Wikipedia 5, and the set of the 1000 most common
English verbs scraped from poetrysoup.com 6. The verb_inflector will read
the file, compute all inflections for each verb, and compare with the data
taken from the file using this command:

python3 ./verb_inflector.py -f inflection_truth_data.txt





The code for scraping the verbs and generating the truth data file can be found
in the verb_scraper folder.

To generate the truth data file, change directories to the verb_scraper
folder and run this command:

python3 ./scrape_verbs.py





Two output files will be generated:


	verb_list.txt, a list of the unique verbs found


	irregular_verbs.py, data structures imported by the verb inflector




In addition to scraping verb data, this code also corrects for some
inconsistencies found between Wikipedia and the Wiktionary entries for each
verb.

Copy irregular_verbs.py to the folder that contains verb_inflector.py,
which should be the parent of the verb_scraper folder.

Next, scrape the inflection truth data from Wiktionary for each verb in
verb_list.txt:

python3 ./scrape_inflection_data.py





This code loads the verb list, constructs the Wiktionary URL for each verb in
the list, scrapes the inflection data, corrects further inconsistencies, and
writes the output file raw_inflection_data.txt.  Progress updates appear
on the screen as the run progresses.

Finally, generate the truth data file with this command:

python3 ./process_scraped_inflection_data.py
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Sentence Tokenization


Overview

Sentence tokenization is the process of splitting text into individual
sentences. For literature, journalism, and formal documents the tokenization
algorithms built in to spaCy perform well, since the tokenizer is trained
on a corpus of formal English text. The sentence tokenizer performs less well
for electronic health records featuring abbreviations, medical terms, spatial
measurements, and other forms not found in standard written English.

ClarityNLP attempts to improve the results of the sentence tokenizer for
electronic health records. It does this by looking for the types of textual
constructs that confuse the tokenizer and replacing them with single words.
The sentence tokenizer will not split an individual word, so the offending
text, in replacement form, is preserved intact during the tokenization process.
After generating the individual sentences, the reverse substitutions are made,
which restores original text in a set of improved sentences.
ClarityNLP also performs additional fixups of the sentences to further improve
the results.  This document will describe the process and illustrate with an
example.



Source Code

The source code for the sentence tokenizer is located in
nlp/algorithms/segmentation/segmentation.py, with supporting code in
nlp/algorithms/segmentation/segmentation_helper.py.


Inputs

The entry point to the sentence tokenizer is the parse_sentences method of
the Segmentation class. This function takes a single argument, the text
string to be split into sentences.



Outputs

The parse_sentences method returns a list of strings, which are the
individual sentences.



Example

	1
2

	seg_obj = Segmentation()
sentence_list = seg_obj.parse_sentences(my_text)











Algorithm

The improvement process proceeds through several stages, which are:


	Perform cleanup operations on the report text.


	Perform textual substitutions.


	Run the spaCy sentence tokenizer on the cleaned, substituted text.


	Find and split two consecutive sentences with no space after the period.


	Undo the substitutions.


	Perform additional sentence fixups for some easily-detectable errors.


	Place all-caps section headers in their own sentence.


	Scan the resulting sentences and delete any remaining errors.




Additional explanations for some of these items are provided below.


Text Cleanup

The text cleanup process first searches the report text for cut-and-paste
section headers found between (Over) and (Cont) tokens. These headers
are often inserted directly into a sentence, producing a confusing result.
Here is an example:


“There are two subcentimeter right renal hypodensities, 1 in\n                                                             (Over)\n\n [**2728-6-8**] 5:24 PM\n CT CHEST W/CONTRAST; CT ABD & PELVIS W & W/O CONTRAST, ADDL SECTIONSClip # [**Telephone/Fax (1) 103840**]\n Reason: Evaluate for metastasis/lymphadenopathy related to ? GI [**Country **]\n Admitting Diagnosis: UPPER GI BLEED\n  Contrast: OMNIPAQUE Amt: 130\n ______________________________________________________________________________\n                                 FINAL REPORT\n (Cont)\n the upper pole and 1 in the lower pole, both of which are too small to\n characterize.”



By looking at this text closely, you can see how the (Over)..(Cont) section
has been pasted into this sentence:

“There are two subcentimeter right renal hypodensities, 1 in the
upper pole and 1 in the lower pole, both of which are too small to\n
characterize.”

The meaning of this passage is not obvious to a human observer on first
inspection, and it completely confuses a sentence tokenizer trained on
standard English text.

ClarityNLP finds these pasted report headers and removes them.

The next step in the cleanup process is the identification of numbered lists.
The numbers are removed and the narrative descriptions following the numbers
are retained.

As is visible in the pasted section header example above, electronic health
records often contain long runs of dashes, asterisks, or other symbols. These
strings are used to delimit sections in the report, but they are of no use for
machine interpretation, so ClarityNLP searches for and removes such strings.

Finally, ClarityNLP locates any instances of repeated whitespace (which
includes spaces, newlines, and tabs) and replaces them with a single space.



Textual Substitutions

ClarityNLP performs several different types of textual substitution prior to
sentence tokenization. All of these constructs can potentially cause problems:







	Construct

	Example





	Abbreviations

	.H/O, Sust. Rel., w/



	Vital Signs

	VS T97.3 P84 BP120/56 RR16 O2Sat98 2LNC



	Capitalized Header

	INDICATION:



	Anonymizations

	[**2728-6-8**], [**Telephone/Fax (1) 103840**]



	Contrast Agents

	Conrast: OMNIPAQUE Amt: 130



	Field of View

	Field of view: 40



	Size Measurement

	3.1 x 4.2 mm



	Dispensing Info

	Protonix 40 mg p.o. q. day.



	Gender

	Sex: M






ClarityNLP uses regular expressions to find instances of these constructs.
Wherever they occur they are replaced with single-word tokens such as
“ANON000”, “ABBREV001”, “MEAS002”, etc. Replacements of each type are numbered
sequentially. The sentence tokenizer sees these replacements as single words,
and it preserves them unchanged through the tokenization process. These
replacements can be easily searched for and replaced in the resulting
sentences.



Split Consecutive Sentences

The punctuation in electronic health records does not always follow standard
forms. Sometimes consecutive sentences in a report have a missing space after
the period of the first sentence, which can cause the sentence tokenizer to
treat both sentences together as a single run-on sentence. ClarityNLP
detects these occurrences and separates the sentences. It also avoids
separating valid abbreviations such as C.Diff., G.Jones, etc.



Perform Additional Sentence Fixups

Sometimes the sentence tokenizer generates sentences that begin with a
punctuation character such as : or ,.  ClarityNLP looks for such
occurrences and moves the punctuation to the end of the preceding sentence.



Delete Remaining Errors

ClarityNLP scans the resulting set of sentences and takes these actions:


	deletes any remaining list numbering


	deletes any sentences consisting only of list numbering


	removes any sentences that consist only of ‘#1’, ‘#2’, etc.


	removes any sentences consisting entirely of nonalphanumeric symbols


	concatenates sentences that incorrectly split an age in years


	concatenates sentences that split the subject of a measurement from the measurement







Example

Here is a before and after example illustrating several of the tokenization
problems discussed above. The data is taken from one of the reports in the
MIMIC data set.

BEFORE: Each numbered string below is a sentence that emerges
from the sentence tokenizer without ClarityNLP’s additional processing. Note
that the anonymized date and name tokens [** ... **] are broken apart, as
are numbered lists, drug dispensing information, vital signs, etc. You can see
how the sentence tokenizer performs better for the narrative sections, but
the abbreviations and other nonstandard forms confuse it and cause errors:

[  0]	Admission Date:  [
[  1]	**3104-4-26
[  2]	**]     Discharge Date:  [**3104-4-28
[  3]	**]


Service:  CARDIAC CA

CHIEF COMPLAINT:   Dyspnea on exertion.

HISTORY OF PRESENT ILLNESS:
[  4]	This is a 78 year old male with
hypertension and hyperlipidemia who was in his usual state of health until two weeks prior to admission when he noted increasing shortness of breath on exertion, especially with stairs.
[  5]	Since that time, the patient reports decreased exercise tolerance but denied any orthopnea, paroxysmal nocturnal dyspnea, or lower extremity swelling.
[  6]	He denies any dizziness or lightheadedness.
[  7]	He was seen in Dr.
[  8]	[**Last Name (STitle) 23973*
[  9]	*]
[ 10]	[**Name (STitle) 23974
[ 11]	*
[ 12]	*]
[ 13]	Clinic the day of admission and was found to have
high grade infra-nodal heart block and was sent to the Emergency Room.
[ 14]	A central line was placed with temporary
pacing wire placed overnight.
[ 15]	PAST MEDICAL HISTORY:
1.  Hypertension.
[ 16]	2.
[ 17]	Hyperlipidemia.
[ 18]	3.
[ 19]	Exercise thallium stress test in [**3100*
[ 20]	*] showed a small
basal inferior fixed defect.
[ 21]	4.
[ 22]	Mild asthma.
[ 23]	5.
[ 24]	Hemorrhoids.
[ 25]	6.
[ 26]	Colonic polyps.
[ 27]	7.
[ 28]	Left bundle branch block since [
[ 29]	**3098-10-8**].
8.
[ 30]	Bilateral hernia repairs.
[ 31]	ALLERGIES:
[ 32]	He has no known drug allergies.
[ 33]	MEDICATIONS:
[ 34]	1.  Hydrochlorothiazide 12.5 mg
[ 35]	p.o.
[ 36]	q. day.
[ 37]	2.
[ 38]	Lipitor 40 mg
[ 39]	p.o.
[ 40]	q.
[ 41]	h.s.
[ 42]	3.
[ 43]	Enalapril 20
[ 44]	mg p.o. twice a day.
[ 45]	4.
[ 46]	Cardizem 180 mg p.o.
[ 47]	q. day.
[ 48]	5.
[ 49]	Aspirin 81 mg
[ 50]	p.o.
[ 51]	q. day.
[ 52]	SOCIAL HISTORY:
[ 53]	He has a remote tobacco history; quit over
25 years ago.
[ 54]	He has a remote alcohol history; quit over 17
years ago.
[ 55]	FAMILY HISTORY:   Family history of stroke but denies any
family history of coronary artery disease or malignancy.
[ 56]	PHYSICAL EXAMINATION:   Temperature
[ 57]	is 98.0 F.; heart rate 35
to 45; blood pressure 161/32; respiratory rate 19; 98% on room air.
[ 58]	In no acute distress.
[ 59]	Pupils were reactive to light; the left was 3 millimeters to 2 millimeters; on the right it was 2 millimeters to 1 millimeters.
[ 60]	Extraocular movements intact.
[ 61]	Mucous membranes were moist.
[ 62]	Jugular venous pressure at about 7 centimeters.
[ 63]	Lungs were clear to auscultation bilaterally.
[ 64]	He is bradycardic with normal S1 and S2 with I/VI systolic murmur at the apex.
[ 65]	His abdomen was soft, nontender, nondistended, with normoactive bowel sounds.
[ 66]	No edema.
[ 67]	In his extremities he had two plus dorsalis pedis bilaterally.
[ 68]	LABORATORY:
[ 69]	EKG showed sinus with atrial rate of 70, 2:1
heart block with ventricular rate of 35 and an old left bundle branch block.
[ 70]	White blood cell count 11.3, hematocrit 34.6, platelets 298.
[ 71]	Sodium 140, potassium 4.1, chloride 102, bicarbonate 25, BUN
26, creatinine 1.3, glucose 129.
[ 72]	CK 96.
[ 73]	Troponin less than
0.3.

Echocardiogram in [
[ 74]	**3103-2-6
[ 75]	**] showed a large left atrium,
ejection fraction 60 to 65% with mild symmetric left ventricular hypertrophy, trace aortic regurgitation, mild mitral regurgitation.
[ 76]	INR was 1.2, PTT 22.7.
[ 77]	Total cholesterol in [**3104-2-6**]
showed total cholesterol of 161, LDL 89, HDL of 35, triglycerides of 184.
[ 78]	Urinalysis was negative.
[ 79]	Chest x-ray was negative.
[ 80]	HOSPITAL COURSE:
[ 81]	The patient remained stable in the
hospital.
[ 82]	He underwent electrophysiology study and pacemaker placement.
[ 83]	He remained stable and asymptomatic.
[ 84]	He was then discharged home.
[ 85]	DISCHARGE
[ 86]	INSTRUCTIONS:
[ 87]	1.
[ 88]	Not to lift anything heavier than ten pounds for two
weeks with the left arm.
[ 89]	2.
[ 90]	He was asked to call his cardiologist with any fatigue or
shortness of breath.
[ 91]	3.
[ 92]	He was to follow-up in Device Clinic in one week.
[ 93]	4.
[ 94]	He was to follow-up with his cardiologist in two to three
weeks.
[ 95]	DISCHARGE DIAGNOSES:
[ 96]	1.
[ 97]	Complete heart block.
[ 98]	MAJOR
[ 99]	INTERVENTIONS:
[100]	1.
[101]	Transvenous pacer wire placement on [**4-26
[102]	**].
[103]	2.
[104]	Pacemaker placement on [
[105]	**4-27
[106]	**].
[107]	CONDITION ON DISCHARGE:   Stable.

DISCHARGE
[108]	MEDICATIONS:
[109]	1.
[110]	Enalapril 20
[111]	mg p.o. twice a day.
[112]	2.
[113]	Hydrochlorothiazide 12.5 mg p.o.
[114]	q. day.
[115]	3.
[116]	Lipitor 40 mg
[117]	p.o.
[118]	q.
[119]	h.s.
[120]	4.
[121]	Percocet p.r.n.
5.
[122]	Keflex 500 mg p.o.
[123]	q. six hours for three days.
[124]	6.
[125]	Ativan 1 mg p.o.
[126]	q.
[127]	h.s.
[128]	as needed.
[129]	7.
[130]	Diltiazem 180 mg p.o.
[131]	q. day.
[132]	[**First Name8 (NamePattern2)
[133]	*
[134]	*]
[135]	[
[136]	**First Name8 (NamePattern2) 1682
[137]	*
[138]	*]
[139]	[**Name8 (MD)
[140]	*
[141]	*], M.D.  [**MD Number(1) 1683
[142]	**]

Dictated By:[**Name8 (MD) 5378
[143]	**]

MEDQUIST36

D:
[144]	[**3104-4-29
[145]	**]  11:19
T:  [
[146]	*
[147]	*3104-5-2**]  21:56
JOB#:  [
[148]	**Job Number 23975**]





AFTER: Here is the same report after ClarityNLP does the cleanup,
substitutions, and additional processing described above:

[  0]	Admission Date: [**3104-4-26**] Discharge Date: [**3104-4-28**] Service:
[  1]	CARDIAC CA CHIEF COMPLAINT:
[  2]	Dyspnea on exertion.
[  3]	HISTORY OF PRESENT ILLNESS:
[  4]	This is a 78 year old male with hypertension and hyperlipidemia who was in his usual state of health until two weeks prior to admission when he noted increasing shortness of breath on exertion, especially with stairs.
[  5]	Since that time, the patient reports decreased exercise tolerance but denied any orthopnea, paroxysmal nocturnal dyspnea, or lower extremity swelling.
[  6]	He denies any dizziness or lightheadedness.
[  7]	He was seen in Dr. [**Last Name (STitle) 23973**] [**Name (STitle) 23974**] Clinic the day of admission and was found to have high grade infra-nodal heart block and was sent to the Emergency Room.
[  8]	A central line was placed with temporary pacing wire placed overnight.
[  9]	PAST MEDICAL HISTORY:
[ 10]	Hypertension.
[ 11]	Hyperlipidemia.
[ 12]	Exercise thallium stress test in [**3100**] showed a small basal inferior fixed defect.
[ 13]	Mild asthma.
[ 14]	Hemorrhoids.
[ 15]	Colonic polyps.
[ 16]	Left bundle branch block since [**3098-10-8**].
[ 17]	Bilateral hernia repairs.
[ 18]	ALLERGIES:
[ 19]	He has no known drug allergies.
[ 20]	MEDICATIONS:
[ 21]	Hydrochlorothiazide 12.5 mg p.o. q. day.
[ 22]	Lipitor 40 mg p.o. q. h.s.
[ 23]	Enalapril 20 mg p.o. twice a day.
[ 24]	Cardizem 180 mg p.o. q. day.
[ 25]	Aspirin 81 mg p.o. q. day.
[ 26]	SOCIAL HISTORY:
[ 27]	He has a remote tobacco history; quit over 25 years ago.
[ 28]	He has a remote alcohol history; quit over 17 years ago.
[ 29]	FAMILY HISTORY:
[ 30]	Family history of stroke but denies any family history of coronary artery disease or malignancy.
[ 31]	PHYSICAL EXAMINATION:
[ 32]	Temperature is 98.0 F.; heart rate 35 to 45; blood pressure 161/32; respiratory rate 19; 98% on room air.
[ 33]	In no acute distress.
[ 34]	Pupils were reactive to light; the left was 3 millimeters to 2 millimeters; on the right it was 2 millimeters to 1 millimeters.
[ 35]	Extraocular movements intact.
[ 36]	Mucous membranes were moist.
[ 37]	Jugular venous pressure at about 7 centimeters.
[ 38]	Lungs were clear to auscultation bilaterally.
[ 39]	He is bradycardic with normal S1 and S2 with I/VI systolic murmur at the apex.
[ 40]	His abdomen was soft, nontender, nondistended, with normoactive bowel sounds.
[ 41]	No edema.
[ 42]	In his extremities he had two plus dorsalis pedis bilaterally.
[ 43]	LABORATORY:
[ 44]	EKG showed sinus with atrial rate of 70, 2:1 heart block with ventricular rate of 35 and an old left bundle branch block.
[ 45]	White blood cell count 11.3, hematocrit 34.6, platelets Sodium 140, potassium 4.1, chloride 102, bicarbonate 25, BUN 26, creatinine 1.3, glucose 129.
[ 46]	CK Troponin less than 0.
[ 47]	Echocardiogram in [**3103-2-6**] showed a large left atrium, ejection fraction 60 to 65% with mild symmetric left ventricular hypertrophy, trace aortic regurgitation, mild mitral regurgitation.
[ 48]	INR was 1.2, PTT 22.
[ 49]	Total cholesterol in [**3104-2-6**] showed total cholesterol of 161, LDL 89, HDL of 35, triglycerides of Urinalysis was negative.
[ 50]	Chest x-ray was negative.
[ 51]	HOSPITAL COURSE:
[ 52]	The patient remained stable in the hospital.
[ 53]	He underwent electrophysiology study and pacemaker placement.
[ 54]	He remained stable and asymptomatic.
[ 55]	He was then discharged home.
[ 56]	DISCHARGE INSTRUCTIONS:
[ 57]	Not to lift anything heavier than ten pounds for two weeks with the left arm.
[ 58]	He was asked to call his cardiologist with any fatigue or shortness of breath.
[ 59]	He was to follow-up in Device Clinic in one week.
[ 60]	He was to follow-up with his cardiologist in two to three weeks.
[ 61]	DISCHARGE DIAGNOSES:
[ 62]	Complete heart block.
[ 63]	MAJOR INTERVENTIONS:
[ 64]	Transvenous pacer wire placement on [**4-26**].
[ 65]	Pacemaker placement on [**4-27**].
[ 66]	CONDITION ON DISCHARGE:
[ 67]	Stable.
[ 68]	DISCHARGE MEDICATIONS:
[ 69]	Enalapril 20 mg p.o. twice a day.
[ 70]	Hydrochlorothiazide 12.5 mg p.o. q. day.
[ 71]	Lipitor 40 mg p.o. q. h.s.
[ 72]	Percocet p.r.n.
[ 73]	Keflex 500 mg p.o. q. six hours for three days.
[ 74]	Ativan 1 mg p.o. q. h.s. as needed.
[ 75]	Diltiazem 180 mg p.o. q. day.
[ 76]	[**First Name8 (NamePattern2) **]
[ 77]	[**First Name8 (NamePattern2) 1682**]
[ 78]	[**Name8 (MD) **], M.D.
[ 79]	[**MD Number(1) 1683**] Dictated By:[**Name8 (MD) 5378**] MEDQUIST36
[ 80]	D:
[ 81]	[**3104-4-29**] 11:19
[ 82]	T:
[ 83]	[**3104-5-2**]
[ 84]	21:56
[ 85]	JOB#:
[ 86]	[**Job Number 23975**]





Note that there are fewer sentences overall, and that each sentence has a much
more standard form than those in the ‘before’ panel above. The drug dispensing
instructions have been been corrected, the list numbering has been removed,
and the patient temperature that was split across sentences 56 and 57 has
been restored (new sentence 32).



Command Line Interface

The sentence tokenizer has a command line interface that can be used for
inspecting the generated sentences. The input data must be a
JSON-formatted file with the proper ClarityNLP fields. This file can be
produced by querying SOLR for the reports of interest and dumping the results
as a JSON-formatted file. The sentence tokenization module will read the
input file, split the text into sentences as described above, and write the
results to stdout. Help for the command line interface can be obtained by
running this command from the nlp/algorithms/segmentation folder:

python3 ./segmentation.py --help





Some examples:

To tokenize all reports in myreports.json and print each sentence to stdout:

python3 ./segmentation.py --file /path/to/myreports.json





To tokenize only the first 10 reports (indices begin with 0):

python3 ./segmentation.py --file myreports.json --end 9``





To tokenize reports 115 through 134 inclusive, and to also show the report text
after cleanup and token substitution (i.e. the actual input to the spaCy
sentence tokenizer):

python3 ./segmentation.py --file myreports.json --start 115 --end 134 --debug









          

      

      

    

  

    
      
          
            
  
Term-Frequency Matrix Preprocessor


Overview

Term-frequency matrices feature prominently in text processing and
topic modeling algorithms. In these problems one typically starts with
a set of documents and a list of words (the dictionary). A
term-frequency matrix is constructed from the dictionary and
the document set by counting the number of occurrences of each dictionary word
in each document. If the rows of the matrix index the words and the columns
index the documents, the matrix element at coordinates (r, c) represents
the number of occurrences of dictionary word r in document c. Thus each
entry of the matrix is either zero or a positive integer.

Construction of such a matrix is conceptually simple, but problems can arise if
the matrix contains duplicate rows or columns. The presence of duplicate
columns means that the documents at those indices are identical
with respect to the given dictionary. The linear algebra algorithms underlying
many text processing and information retrieval tasks can exhibit instability or
extremely slow convergence if duplicates are present. Mathematically, a
term-frequency matrix with duplicate columns has a rank that is numerically
less than the column count. Under such conditions it is advantageous to remove
the duplicated columns (and/or rows) and work with a smaller,
fuller-rank matrix.

The ClarityNLP matrix preprocessor is a command-line tool that scans a
term-frequency matrix looking for duplicate rows and columns. If it finds any
duplicates it prunes them and keeps only one row or column from each set of
duplicates. After pruning it scans the matrix again, since removal of rows or
columns could create further duplicates. This process of scanning and checking
for duplicates proceeds iteratively until either a stable matrix is achieved or
nothing is left (a rare occurrence, mainly for ill-posed problems). The
resulting matrix is written to disk, along with the surviving row and column
index lists.



Source Code

The source code for the matrix preprocessor is located in
nlp/algorithms/matrix_preprocessor.  The code is written in C++ with a
python driver preprocess.py.


Building the Code

A C++ compiler is required to build the matrix preprocessor.

On Linux systems, use your package manager to install the build-essential
package, which should contain the Gnu C++ compiler and other tools needed to
build C++ code. After installation, run the command g++ --version, which
should print out the version string for the Gnu C++ compiler. If this command
produces a command not found error, then use your package manager to
explicitly install the g++ package.

On MacOSX, install the xcode command-line tools with this command:
xcode-select --install. After installation run the command
clang++ --version, which should generate a version string for the clang
C++ compiler.

After verifying that the C++ compiler works, build the matrix preprocessor code
with these commands:

cd nlp/algorithms/matrix_preprocessor
make





The build process should run to completion with no errors, after which these
binaries should be present in the build/bin folder: libpreprocess.a,
preprocessor, and test_preprocessor.




Inputs

The matrix preprocessor requires a single input file. The input file must be
in MatrixMarket [https://math.nist.gov/MatrixMarket/] format, a popular and efficient format for
sparse matrices.

Python supports the MatrixMarket format via the scipy module and the
functions scipy.io.mmwrite and scipy.io.mmread.


Input Options

The matrix preprocessor supports the following set of command line options. All
are optional except for --infile, which specifies the file containing the
term-frequency matrix to be processed:








	Option

	Argument

	Explanation



	-i, --infile

	string

	path to input file, MatrixMarket format



	-r, --min_docs_per_term

	integer

	min number of docs per dictionary term, default 3



	-c, --min_terms_per_doc

	integer

	min number of dictionary terms per doc, default 5



	-p, --precision

	integer

	precision of values in output file, default 4 digits
(valid only if --weights flag is present)



	-w, --weights

	none

	if present, generate TF-IDF weights for entries
and output a floating point term-document matrix



	-b, --boolean

	none

	if present, enable boolean mode, in which nonzero
values in the input matrix are set to 1



	-h, --help

	none

	print user help to stdout



	-v, --version

	none

	print version information to stdout






The --min_docs_per_term option is the cutoff value for pruning rows. Any
dictionary term that appears in fewer than this many documents will be pruned.
In other words, a row of the input matrix will be pruned if its row sum is less
than this value.

Similarly, the --min_terms_per_doc option is the cutoff value for pruning
columns. Any document that contains fewer than this many dictionary words will
be pruned. In other words, a column of the input matrix will be pruned if its
column sum is less than this value.




Outputs

The matrix preprocessor generates three output files.

One file, reduced_dictionary_indices.txt, is a list of row indices from the
original matrix that survived the pruning process. Another file,
reduced_document_indices.txt, contains a list of original document indices
that survived the pruning process.

The third file, in MatrixMarket format, is the pruned matrix. The contents and
name of this file depend on whether the --weights flag was used for the
run.

If the --weights flag was absent, the output is another term-frequency
matrix in MatrixMarket format. The output file name is reduced_matrix_tf.mtx
and it contains nonnegative integer entries.

If the --weights flag was present, the output is a term-document matrix
containing TF_IDF weights for the entries. In this case the output file name
is reduced_matrix.mtx and it contains floating point entries. The precision
of each entry is set by the --precision flag.

All output files are written to the current directory.



Examples


	Prune duplicate rows/columns from the input term-frequency matrix.
Write pruned matrix to reduced_matrix_tf.mtx; generate the two index files
as well:

python3 ./preprocess.py --infile /path/to/mymatrix.mtx







	Same as in example 1, but generate an output term-document matrix containing
TF-IDF weights. Write result matrix to reduced_matrix.mtx; generate the
two index files also:

python3 ./preprocess.py --infile /path/to/mymatrix.mtx --weights







	Same as 2, but require a mininim row sum of 6 and a mininum column sum of 8
in the pruned term-frequency matrix. Compute TF-IDF weights and output a
floating point term-document matrix.

python ./preprocess.py -i /path/to/mymatrix.mtx -r 6 -c 8 -w











Important Note

The matrix preprocessor was designed for sparse matrices. The term-frequency
matrices that occur in typical text processing problems are extremely sparse,
with occupancies of only a few percent. Dense matrices should be handled with
different techniques.





          

      

      

    

  

    
      
          
            
  
Term Finder

The most basic algorithm, which uses regular expressions to identify terms. In addition, the algorithm will return section, negation, experiencer and temporality. Runs the ConText and
section tagging algorithms.



Provider Assertion

An extension of Term Finder, which uses regular expressions to identify terms. In addition, the algorithm will return section, negation, experiencer and temporality from ConText, but will filter them such that the follow conditions are met:


	Negation: Affirmed


	Experiencer: Patient


	Temporality: Historical OR Recent







          

      

      

    

  

    
      
          
            
  
Finding Date Expressions


Overview

ClarityNLP includes a module that locates date expressions in clinical text.
By ‘date expression’ we mean a string such as July 20, 1969, 7.20.69,
or something similar. The DateFinder module scans sentences for date
expressions, extracts them, and generates output in JSON format.



Source Code

The source code for the date finder module is located in
nlp/algorithms/finder/date_finder.py.


Inputs

A single string, the sentence to be scanned for date expressions.



Outputs

A JSON array containing these fields for each date expression found:







	Field Name

	Explanation





	text

	string, text of the complete date expression



	start

	integer, offset of the first character in the matching text



	end

	integer, offset of the final character in the matching text plus 1



	year

	integer year



	month

	integer month (Jan=1, Feb=2, …, Dec=12)



	day

	integer day of the month [1, 31]






All JSON results contain an identical number of fields. Any fields that are
not valid for a given date expression will have a value of EMPTY_FIELD and
should be ignored.




Algorithm

ClarityNLP uses a set of regular expressions to recognize date expressions.
The date_finder module scans a sentence with each date-finding regex and
keeps track of any matches. If any matches overlap, an overlap resolution
process is used to select a winniner. Each winning match is converted to a
DateValue namedtuple. This object is defined at the top of the source code
module and can be imported by other Python code. Each namedtuple is appended
to a list as the sentence is scanned. After scanning completes, the list of
DateValue namedtuples is converted to JSON and returned to the caller.


Date Expression Formats

Using notation similar to that used by the
PHP date reference [https://www.php.net/manual/en/datetime.formats.date.php],
we define the following quantities:







	Shorthand

	Meaning





	dd

	one or two-digit day of the month with optional suffix (7th, 22nd, etc.)



	DD

	two-digit day of the month



	m

	textual name of the month



	M

	textual month abbreviation



	mm

	one or two-digit numerical month



	MM

	two-digit month



	y

	two or four-digit year



	yy

	two-digit year



	YYYY

	four-digit year



	?

	optional






With these definitions, the date expression formats that ClarityNLP recognizes are
(using the date of the first Moon landing for illustration):







	Date Expression Format

	Examples





	YYYYMMDD

	19690720



	[-+]?YYYY-MM-DD

	+1969-07-20



	YYYY/MM/DD

	1969/07/20



	YY-MM-DD

	69-07-20



	YYYY-MM-DDTHH:MM:SS(.ffffff)?

	


	(here MM:SS means minutes and seconds)

	


	mm/dd/YYYY

	07/20/1969



	YYYY/mm/dd

	1969/7/20, 1969/07/20



	dd-mm-YYYY, dd.mm.YYYY

	20-07-1969, 20.7.1969



	y-mm-dd

	1969-7-20, 1969-07-20, 69-7-20



	dd.mm.yy

	20.7.69, 20.07.69



	dd-m-y, ddmy, dd m y

	20-JULY-69, 20JULY69, 20 July 1969



	m-dd-y, m.dd.y, mddy, m dd, y

	20-July 1969, 20JULY1969, 20 July, 1969



	M-DD-y

	Jul-20-1969, Jul-20-69



	y-M-DD

	69-Jul-20, 1969-Jul-20



	mm/dd

	7/20, 07/20



	m-dd, m.dd, m dd

	July 20, July 20th, July-20



	dd-m, dd.m, dd m

	20-July, 20.July, 20 July



	YYYY-mm

	1969-07, 1969-7



	m-YYYY, m.YYYY, m YYYY

	July-1969, July.1969, July 1969



	YYYY-m, YYYY.m, YYYY m

	1969-July, 1969.July, 1969 July



	YYYY

	1969



	m

	July











          

      

      

    

  

    
      
          
            
  
Finding Time Expressions


Overview

ClarityNLP includes a module that locates time expressions in clinical text.
By ‘time expression’ we mean a string such as 9:41 AM, 05:12:24.12345,
or something similar. The TimeFinder module scans sentences for time
expressions, extracts them, and generates output in JSON format.



Source Code

The source code for the time finder module is located in
nlp/algorithms/finder/time_finder.py.


Inputs

A single string, the sentence to be scanned for time expressions.



Outputs

A JSON array containing these fields for each time expression found:







	Field Name

	Explanation





	text

	string, text of the complete time expression



	start

	integer, offset of the first character in the matching text



	end

	integer, offset of the final character in the matching text plus 1



	hours

	integer hours



	minutes

	integer minutes



	seconds

	integer seconds



	fractional_seconds

	string, contains digits after decimal point, including any leading zeros



	am_pm

	string, either STR_AM or STR_PM (see values below)



	timezone

	string, timezone code



	gmt_delta_sign

	sign of the UTC offset, either ‘+’ or ‘-’



	gmt_delta_hours

	integer, UTC hour offset



	gmt_delta_minutes

	integer, UTC minute offset






All JSON results contain an identical number of fields. Any fields that are
not valid for a given time expression will have a value of EMPTY_FIELD and
should be ignored.




Algorithm

ClarityNLP uses a set of regular expressions to recognize time expressions.
The time_finder module scans a sentence with each time-finding regex and
keeps track of any matches. If any matches overlap, an overlap resolution
process is used to select a winniner. Each winning match is converted to a
TimeValue namedtuple. This object is defined at the top of the source code
module and can be imported by other Python code. Each namedtuple is appended
to a list as the sentence is scanned. After scanning completes, the list of
TimeValue namedtuples is converted to JSON and returned to the caller.


Time Expression Formats

Using notation similar to that used by the
PHP time reference [https://www.php.net/manual/en/datetime.formats.time.php],
as well as the Wikipedia article on
ISO 8601 formats [https://en.wikipedia.org/wiki/ISO_8601], we define the
following quantities:







	Shorthand

	Meaning





	h

	hour digit, 0-9



	h12

	12 hr. clock, hours only,   0-9



	h24

	24 hr. clock, hours only, zero-padded, 00-24



	m

	minutes digit, 0-9



	mm

	minutes, zero-padded, 00-59



	ss

	seconds, zero-padded 00-60 (60 means leap second)



	am_pm

	am or pm designator, can be am or pm, either lower or upper case, with each
letter optionally followed by a . symbol



	t

	either t or T



	f

	fractional seconds digit



	?

	optional



	utc_time

	hh, hh:mm, hhmm, hh:mm:ss, hhmmss, hh:mm:ss.ffffff, hhmmss.ffffff






With these definitions, the time expression formats that ClarityNLP recognizes are:







	Time Expression Format

	Examples





	utc-timeZ

	10:14:03Z



	utc_time+-hh:mm

	10:14:03+01:30, 10:14:03-01:30



	utc_time+-hhmm

	10:14:03+0130,  10:14:03-0130



	utc_time+-hh

	10:14:03+01,    10:14:03-01



	YYYY-MM-DDTHH:MM:SS(.ffffff)?

	1969-07-20T10:14:03.123456



	(here MM:SS means minutes and seconds)

	


	h12 am_pm

	4 am, 5PM, 10a.m., 9 pm.



	h12m am_pm

	5:09 am, 9:41 P.M., 10:02 AM.



	h12ms am_pm

	06:10:37 am, 10:19:36P.M., 1:02:03AM



	h12msf

	7:11:39:012345 am, 11:41:22.22334 p.m.



	h12m

	4:08, 10:14, and 11:59



	t?h24m

	14:12, 01:27, 10:27, T23:43



	t?h24ms

	01:03:24, T14:15:16



	t?h24msf

	04:08:37.81412, 19:20:21.532453, 08:11:40:123456



	t?hhmm

	0613, t0613



	t?hhmmss

	232120, 120000



	t?h24ms with timezone abbreviation

	040837CEST, 112345 PST, T093000 Z



	t?h24ms with GMT offset

	T192021-0700, 14:45:15+03:30






A list of world time zone abbreviations can be found
here [https://en.wikipedia.org/wiki/List_of_time_zone_abbreviations]. ClarityNLP supports
this list as well as Z, meaning “Zulu” or UTC time.






          

      

      

    

  

    
      
          
            
  
Finding Size Measurements


Overview

Size measurements are common in electronic health records, especially in
radiology and other diagnostic reports.  By ‘size measurement’ we mean a 1D, 2D,
or 3D expression involving lengths, such as:







	Example

	Meaning





	3mm

	1D measurement



	1.2 cm x 3.6 cm

	2D measurement



	3 by 4 by 5 cm

	3D measurement



	1.5 cm2

	area measurement



	4.3 mm3

	volume measurement



	2.3 - 4.5 cm

	range of lengths



	1.1, 2.3, 8.5, and 12.6 cm

	list of lengths



	1.5cm craniocaudal x 2.2cm transverse

	measurement with views






ClarityNLP scans sentences for size measurements, extracts the numeric values
for each dimension, normalizes each to a common set of units (performing unit
conversions if necessary), and provides output in JSON format to other pipeline
components.



Source Code

The source code for the size measurement finder module is located in
nlp/algorithms/finder/size_measurement_finder.py.


Inputs

A single string, the sentence to be scanned for size measurements.



Outputs

A JSON array containing these fields for each size measurement found:







	Field Name

	Explanation





	text

	text of the complete measurement



	start

	offset of the first character in the matching text



	end

	offset of the final character in the matching text plus 1



	temporality

	CURRENT or PREVIOUS, indicating when the measurement occurred



	units

	either mm, mm2, or mm3



	condition

	either ‘RANGE’ for numeric ranges, or ‘EQUAL’ for all others



	x

	numeric value of first number



	y

	numeric value of second number



	z

	numeric value of third number



	values

	for lists, a JSON array of all values in the list



	xView

	view specification for the first axis



	yView

	view specification for the second axis



	zView

	view specification for the third axis



	minValue

	either min([x, y, z]) or min(values)



	maxValue

	either max([x, y, z]) or max(values)






All JSON measurement results contain an identical number of fields. Any fields
that are not valid for a given measurement will have a value of EMPTY_FIELD and
should be ignored.

All string operations of the size measurement finder are case-insensitive.




Algorithm

ClarityNLP uses a set of regular expressions to recognize size measurements. It
scans a sentence with each regex, keeps track of any matches, and finds the
longest match among the matching set. The longest matching text string is then
tokenized, values are extracted, units are converted, and a python namedtuple
representing the measurement is generated. This process is repeated until no
more measurements are found, at which point the array of measurement
namedtuples is converted to JSON and returned to the caller.


Measurement Formats

ClarityNLP is able to recognize size measurements in a number of different formats.
Using notation similar to that of 1, we define the following quantities:







	Shorthand

	Meaning





	x y z

	Any numeric value, either floating point or integer



	cm

	Units for the preceding numeric value



	by

	Either the word ‘by’ or the symbol ‘x’



	to

	Either the word ‘to’ or the symbol ‘-’



	vol

	Dimensional modifier, either ‘square’, ‘cubic’, ‘sq’, ‘sq.’, ‘cu’, ‘cu.’, ‘cc’



	view

	View specification, any word will match






With these definitions, the measurement formats that ClarityNLP recognizes are:







	Regex Form

	Examples





	x cm

	3 mm, 5cm, 10.2 inches



	x vol cm

	5 square mm, 3.2cm2



	x to y cm

	3-5 cm, 3 to 5cm



	x cm to y cm

	3 cm to 5 cm, 3cm - 5 cm



	x by y cm

	3 x 5 inches, 3x5 cm



	x cm by y cm

	3 mm by 5 mm



	x cm view by y cm view

	3 cm craniocaudal x 5 cm transverse



	x by y by z cm

	3 x 5 x 7 mm



	x by y cm by z cm

	3 x 5mm x 7 mm



	x cm by y cm by z cm

	3 mm x 5 mm x 7 mm



	x cm view by y cm view by z cm view

	3 cm craniocaudal by 5cm transverse by 7 cm anterior






ClarityNLP can also find size measurements with nonuniform spacing between the
various components, as several of the examples above demonstrate. Newlines can
also be present within a measurement. Inconsistent spacing such as this
appears frequently in electronic health records.



Details

These medically-relevant measurement units are supported:







	Units

	Textual Forms





	millimeters

	mm, millimeter, millimeters



	centimeters

	cm, centimeter, centimeters



	inches

	in, inch, inches






ClarityNLP tries to distinguish uses of the word ‘in’ as a preposition vs.
its use as a unit of length. It cannot correctly identify all such instances.
Hence the word ‘in’ preceded by a numeric value may sometimes generate false
positive results.

Numeric values can be integers (sequence of digits) or floating point values.
The digit before the decimal point is optional. Some examples:


	3, 42


	12.4887


	.314, 0.314
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Extracting Tumor Stage Information


Overview

The Union for International Cancer Control (UICC) has developed a system for
classifying malignant tumors called the TNM staging system. Each tumor is
assigned an alphanumeric code (the TNM code) that describes the extent of
the tumor, lymph node involvement, whether it has metastasized, and several
other descriptive factors. The code also includes staging information.
ClarityNLP can locate these codes in medical reports and decode them. This
document describes the TNM system and the information that ClarityNLP provides
for each TNM code that it recognizes.

Information on the TNM system was taken from the reference document 1 and
the explanatory supplement 2. Information on serum marker values was
taken from the Wikipedia article on the TNM staging system 3.



Source Code

The source code for the TNM stage module is located in
nlp/algorithms/value_extraction/tnm_stage_extractor.py.


Inputs

A single string representing the sentence to be searched for TNM codes.



Outputs

A JSON array containing these fields for each code found:







	Field Name

	Explanation





	text

	text of the complete code



	start

	offset of first char in the matching text



	end

	offset of final char in the matching text + 1



	t_prefix

	see prefix code table below



	t_code

	extent of primary tumor



	t_certainty

	primary tumor certainty factor



	t_suffixes

	see T suffix table below



	t_multiplicity

	tumor multiplicity value



	n_prefix

	see prefix code table below



	n_code

	regional lymph node involvement



	n_certainty

	certainty factor for lymph node involvement



	n_suffixes

	see N suffix table below



	n_regional_nodes_examined

	number of regional lymph nodes examined



	n_regional_nodes_involved

	number of regional lymph nodes involved



	m_prefix

	see prefix code table below



	m_code

	distant metastasis



	m_certainty

	certainty factor for distant metastasis



	m_suffixes

	see M suffix table below



	l_code

	lymphatic invasion code



	g_code

	histopathological grading code



	v_code

	venous invasion code



	pn_code

	perineural invasion code



	serum_code

	serum tumor marker code



	r_codes

	residual metastases code



	r_suffixes

	see R suffix table below



	r_locations

	string array indicating location(s) of metastases



	stage_prefix

	see prefix table below



	stage_number

	integer value of numeric stage



	stage_letter

	supplementary staging information






All JSON measurement results contain an indentical number of fields. Any fields
that are not valid for a given measurement will have a value of EMPTY_FIELD and
should be ignored.




Algorithm

ClarityNLP uses a set of regular expressions to recognize TNM codes as a whole
and to decode the individual subgroups. A TNM code consists of mandatory
T, N, and M groups, as well as optional G, L, R, Pn, S, and V groups.
A staging designation may also be present.


Prefixes

The set of prefixes used for the groups is found in the next table:







	Prefix Letter

	Meaning





	c

	clinical classification



	p

	pathological classification



	yc

	clinical classification performed during multimodal therapy



	yp

	pathological classification performed during multimodal therapy



	r

	recurrent tumor



	rp

	recurrence after a disease-free interval, designated at autopsy



	a

	classification determined at autopsy








Certainty Factor

The T, N, and M groups can have an optional certainty factor,
which indicates the degree of confidence in the designation.  This certainty
factor was present in the 4th through 7th editions of the TNM guide, but it
has been removed from the 8th edition 1.







	Certainty Factor

	Meaning





	C1

	evidence from standard diagnostic means (inspection, palpitation)



	C2

	evidence from special diagnostic means (CT, MRI, ultrasound)



	C3

	evidence from surgical exploration, including biopsy and cytology



	C4

	evidence from definitive surgery and pathological examination



	C5

	evidence from autopsy








T Group

The T group describes the extent of the primary tumor:







	T Code

	Meaning





	TX

	primary tumor cannot be assessed



	T0

	no evidence of primary tumor



	Tis

	carcinoma in situ



	T1, T2, T3, T4

	increasing size and/or local extent of primary tumor






For multiple tumors, the multiplicity appears in parentheses after
the T group code, e.g. T1(m) or T1(3). Anatomical subsites
are denoted with suffixes a, b, c, or d, e.g. T2a.
Recurrence in the area of a primary tumor is denoted with the +
suffix.



N Group

The N group describes the extent of regional lymph node involvement:







	N Code

	Meaning





	NX

	reginal lymph node involvement cannot be assessed



	N0

	no regional lymph node metastasis



	N1, N2, N3

	increasing involvement of regional lymph nodes






Anatomical subsites are denoted with suffixes a, b, c, or
d, e.g. N1b. With only micrometastasis (smaller than 0.2 cm),
the suffix (mi) should be used, e.g. pN1(mi).

Suffix (sn) indicates sentinal lymph node involvement.

Examination for isolated tumor cells (ITC) is indicated with the suffixes
in parentheses (e.g. pN0(i-)):







	ITC Suffix

	Meaning





	(i-)

	no histologic regional node matastasis,
negative morphological findings for ITC



	(i+)

	no histologic regional node metastasis,
positive morphological findings for ITC



	(mol-)

	no histologic regional node metastasis,
negative non-morphological findings for ITC



	(mol+)

	no histologic regional node metastasis,
positive non-morphological findings for ITC






Examination for ITC in sentinel lymph nodes uses these suffixes:







	ITC(sn) Suffix

	Meaning





	(i-)(sn)

	no histologic sentinel node matastasis,
negative morphological findings for ITC



	(i+)(sn)

	no histologic sentinel node metastasis,
positive morphological findings for ITC



	(mol-)(sn)

	no histologic sentinel node metastasis,
negative non-morphological findings for ITC



	(mol+)(sn)

	no histologic sentinel node metastasis,
positive non-morphological findings for ITC






The TNM supplement 2 chapter 1, p. 8 recommends adding the number
of involved and examined regional lymph nodes to the pN
classification (pathological classification), e.g. pN1b(2/11).
This example says that 11 regional lymph nodes were examined and
two were found to be involved.



M Group

The M group describes the extent of distant metastasis:







	M Code

	Meaning





	MX

	metastasis cannot be assessed; considered inappropriate if
metastasis can be evaluated based on physical exam alone;
see 1 p. 24, 2 pp. 10-11.



	M0

	no distant metastasis



	M1

	distant metastasis



	pMX

	invalid category (2, p. 10)



	pM0

	only to be used after autopsy (2, p. 10)



	pM1

	distant metastasis microscopically confirmed






The M1 and pM1 subcategories may be extended by these optional
suffixes, indicating the location of the distant metastasis:







	Location Suffix

	Meaning





	PUL

	pulmonary



	OSS

	osseous



	HEP

	hepatic



	BRA

	brain



	LYM

	lymph nodes



	MAR

	bone marrow



	PLE

	pleura



	PER

	peritoneum



	ADR

	adrenals



	SKI

	skin



	OTH

	other






Anatomical subsites are denoted with suffixes a, b, c, and d.
The suffix (cy+) is valid for M1 codes under certain conditions
(see 2 p. 11).

For isolated tumor cells (ITC) found in bone marrow (2 p. 11), these
suffixes can be used:







	Suffix

	Meaning





	(i+)

	positive morphological findings for ITC



	(mol+)

	positive non-morphological findings for ITC








R Group

The R group describes the extent of residual metastases:







	R Code

	Meaning





	RX

	presence of residual tumor cannot be assessed



	R0 (location)

	residual tumor cannot be detected by any diagnostic means



	R1 (location)

	microscopic residual tumor at indicated location



	R2 (location)

	macroscopic residual tumor at indicated location






The TNM supplement (2, p. 14) recommends annotating R with the location in
parentheses, e.g. R1 (liver). There can also be multiple R designations
if residual tumors exist in more than one location.

The presence of noninvasive carcinoma at the resection margin should be
indicated by the suffix (is) (see 2, p. 15).

The suffix (cy+) for R1 is valid under certain conditions (2, p. 16).



G Group

The G group discribes the histopathological grading score and has these
values:







	G Code

	Meaning





	GX

	grade of differentiation cannot be assessed



	G1

	well differentiated



	G2

	moderately differentiated



	G3

	poorly differentiated



	G4

	undifferentiated







G1 and G2 may be grouped together as G1-2 (2, p. 23).

G3 and G4 may be grouped together as G3-4 (2, p. 23).





L Group

The L group indicates whether lymphatic invasion has occurred:







	L Code

	Meaning





	LX

	lymphatic invasion cannot be assessed



	L0

	no lymphatic invasion



	L1

	lymphatic invasion








V Group

The V group indicates whether venous invasion has occurred:







	V Code

	Meaning





	VX

	venous invasion cannot be assessed



	V0

	no venous invasion



	V1

	microscopic venous invasion



	V2

	macroscopic venous invasion








Pn Group

The Pn group indicates whether perineural invasion has occurred:







	Pn Code

	Meaning





	PnX

	perineural invasion cannot be assessed



	Pn0

	no perinerual invasion



	Pn1

	perineural invasion








Serum Group

The S group indicates the status of serum tumor markers:







	S Code

	Meaning





	SX

	marker studies not available or not performed



	S0

	marker study levels within normal limits



	S1

	markers are slightly raised



	S2

	markers are moderately raised



	S3

	markers are very high








Staging

The staging value indicates the severity of the tumor. A staging assignment
depends on the tumor type and is indicated either with digits or roman
numerals, and optionally with subscript a, b, c, or d.
The stage designation can also have a y or yp prefix as well
(2, p. 18).
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General Value Extraction


Overview

Value extraction is the process of scanning text for query terms and finding
numeric values associated with those terms. For example, consider the
sentence:

The patient's heart rate was 60 beats per minute.





It is clear that the value 60 is associated with heart rate. A value
extractor using this sentence as input should therefore return 60 as the
result for the query heart rate.

Values can occur either before or after the query terms, since both
variants are acceptable forms of English expression:

A 98.6F temperature was measured during the exam.    (before)
A temperature of 98.6F was measured during the exam. (after)





The value-follows-query form is dominant in the text of medical records.
To constrain the scope of the problem and to reduce the chances of error:


ClarityNLP assumes that the value FOLLOWS the query terms.




This assumption does not imply anything about the distance between the
query and the value. Sometimes the value immediately follows the term, as
in terse lists of vital signs:

Vitals: Temp 100.2 HR 72 BP 184/56 RR 16 sats 96% on RA





Other times, in narrative text, one or more words fill the space between
query term and value:

The temperature recorded for the patient at the exam was 98.6F.





ClarityNLP tries to understand these situations and correctly associate the
value 98.6 with “temperature”.

We should emphasize that this is a generic value extractor. Our design goal
is to achieve good performance across a wide variety of value extraction
problems. It has not been specialized for any particular type of problem,
such as for extracting temperatures or blood pressures. It instead uses
an empirically-determined set of rules and regular expressions to find
values (either numeric or textual - see below) that are likely to be associated
with the query terms. These regexes and rules are under continual refinement
and testing as the development of ClarityNLP continues.

You can get a clearer picture of what the value extractor does and the
results that it finds by examining our comprehensive suite of
value extractor tests [https://github.com/ClarityNLP/ClarityNLP/blob/develop/nlp/algorithms/value_extraction/test_value_extractor.py].


Value Types

The value extractor can recognize several different value types:







	Value Type

	Example





	Nonnegative Integer

	0, 3, 42



	Nonnegative Floating Point

	3.1415, .27, 0.27



	Numeric Range

	2-5, 2.3 - 4.6, 2.3 to 4.6



	Numeric Range with Matching Units

	15 ml to 20 ml



	Fraction

	120/80, 120 / 80, 120 /80



	Fraction Range

	110/70 - 120/80






Fractions can have arbitrary whitespace on either side of the forward
slash, as some of these examples illustrate. For floating point numbers,
the digit before the decimal point is optional.



Value Relationships

The value extractor can associate queries and values expressed in many different
formats:







	Format

	Example





	No space

	T98.6



	Whitespace

	T 98.6, T    98.6



	Dash

	T-98.6, T- 98.6



	Colon

	T:98.6, T  :98.6



	Equality

	T=98.6, T = 98.6, T  =98.6, T is 98.6



	Approximations

	T ~ 98.6, T approx. 98.6, T is ~98.6



	Greater Than or Less Than

	T > 98.6, T<=98.6, T .lt. 98.6, T gt 98.6



	Narrative

	T was greater than 98.6






These are just a few of the many different variants that the value extractor supports.
In general, the amount of whitespace between query and value is arbitrary.



Result Filters

Numerical results can be filtered by user-specified min and max values.
Any results that fall outside of the interval [min, max] are discarded.
Any numeric value is accepted if these limits are omitted in the NLPQL
statement.

For fractions, the value extractor returns the numerator value by default.
The denominator can be returned instead by using the is_denom_only
argument (see below).



Hypotheticals

The value extractor attempts to identify hypothetical phrases and to ignore any
values found therein. It uses a simplified version of the ConText algorithm
of 1 to recognize hypothetical phrases. The “trigger” terms that denote
the start of a hypothetical phrase are: in case, call for, should,
will consider, and if when not preceded by know and not followed
by negative.




Source Code

The source code for the value extractor module is located in
nlp/algorithms/value_extraction/value_extractor.py.


Inputs

The entry point to the value extractor is the run function:

	1
2
3
4
5
6
7

	def run(term_string,              # string, comma-separated list of query terms
        sentence,                 # string, the sentence to be processed
        str_minval=None,          # minimum numeric value
        str_maxval=None,          # maximum numeric value
        str_enumlist=None,        # comma-separated string of terms (see below)
        is_case_sensitive=False,  # set to True to preserve case
        is_denom_only=False)      # set to True to return denoms








If the str_minval and str_maxval arguments are omitted, ClarityNLP accepts
any numeric value that it finds for a given query. The str_enumlist argument
will be explained below. The other arguments should be self-explanatory.



Outputs

A JSON array containing these fields for each value found:







	Field Name

	Explanation





	sentence

	the sentence from which values were extracted



	terms

	comma-separated list of query terms



	querySuccess

	“true” if a value was found, “false” if not



	measurementCount

	the number of values found



	measurements

	array of results






Each result in the measurements array contains these fields:







	Field Name

	Explanation





	text

	matching text containing query and value



	start

	offset of the first character in the matching text



	end

	offset of the final character in the matching text plus 1



	condition

	a string expressing the relation between query and value:
APPROX, LESS_THAN, LESS_THAN_OR_EQUAL, GREATER_THAN,
GREATER_THAN_OR_EQUAL, EQUAL, RANGE, FRACTION_RANGE



	matchingTerm

	the query term associated with this value



	x

	matching value



	y

	matching value (only for ranges)



	minValue

	minimum value of x and y



	maxValue

	maximum value of x and y






All JSON results will have an identical number of fields. Any fields that are
not valid for a given result will have a value of EMPTY_FIELD and should be
ignored.



Text Mode and the Enumeration List

The value extractor supports a mode of operation (“text mode”) in which it
extracts text strings instead of numeric values. Text mode can be enabled by
supplying a comma-separated string of terms to the
enum_list parameter in your NLPQL statement. The
enumlist acts like a term filter for the results. Only those terms
appearing in the enumlist are returned in the value field of the JSON
result.

To illustrate how text mode works, suppose you have the task of searching
medical records for the presence of hepatitis B or C infections. You want
to use ClarityNLP to scan the data and report any lab results that mention
HBV or HCV. The presence or absence of HBV or HCV is typically reported as
either “positive” or “negative”, or sometimes as just “+” or “-“.

You would start by constructing an enumlist with the terms and
symbols that you want, such as "positive, negative, +, -". This string
would be supplied as the value for the NLPQL enum_list.  Your
termset would include the strings "HBV" and "HCV".

Next suppose that, during a run, ClarityNLP were to encounter the sentence
She was HCV negative, HBV +, IgM Titer-1:80, IgG positive. The value
extractor would process this sentence, noticing the presence of the enumlist,
and therefore put itself into text mode. When processing completes the value
extractor would return two results. The first JSON result would have these
values for the matching “term” and “value” fields (other fields omitted):

{
    "term":"HCV",
    "value":"negative"
}





The second JSON result would have these values:

{
    "term":"HBV",
    "value":"+"
}





In this manner the value extractor supports the extraction of textual
“values” in addition to numeric values.




Algorithm

The value extractor does its work in four stages. The first stage consists of
preprocessing operations; the second stage extracts candidate
values; the third stage performs overlap resolution to choose a winner
from among the candidates; and the fourth stage removes hypotheticals. All
results that remain are converted to JSON format and returned to the caller.


Preprocessing

In the preprocessing stage, a few nonessential characters (such as parentheses
and brackets) are removed from the sentence. Removal of these characters helps
to simplify the regular expressions at the core of the value extractor.
Conversion to lowercase follows for the default case-insensitive mode of
operation. Identical preprocessing operations are applied to the list of
query terms.

The sentence is then scanned for
date expressions,
size measurements, and
time expressions. The value extractor erases any
that it finds, subject to these restrictions:


	Date expressions are not erased if they consist entirely of simple digits.
For instance, the date finder will identify the string “1995” as the year
1995, but “1995” could potentially be a volume measurement or another
value in a different context.


	All size measurements are erased unless the units are cubic centimeters
or inches. Measurements in inches are kept since “in” as an abbreviation
for “inches” can be easily confused with “in” as a preposition. ClarityNLP
makes an attempt at disambiguation, but at present it does not have a
technique that works reliably in all instances. Part of speech tagging is
generally not helpful either. Tagging algorithms trained on formal
Engish text (such as journalism or Wikipedia articles) exhibit lackluster
performance on medical text, in our experience.


	Time measurements require additional processing. Any time measurements
that consist entirely of integers on both sides of a - sign are not
erased, since these are likely to be numeric ranges instead of time
expressions.

ISO time formats such as hh, hhmm, hhmmss that are not preceded by
at or @ are not erased, since these are likely to be values and
not time expressions.

Time durations such as 2 hrs are identified and erased.





To illustrate the erasure process, consider this somewhat contrived example:

Her BP at 3:27 on3/27 from her12 cm. x9cm x6  cm. heart was110/70.





Here we see a sentence containing the time expression 3:27, a date
expression 3/27, and a size measurement 12 cm. x9cm x6  cm.. The
sentence exhibits irregular spacing, as is often the case with clinical
text.

Suppose that the query term is BP, meaning “blood pressure”.  When the
value extractor processes this sentence, it converts the sentence to
lowercase, then scans for dates, measurements, and times. The date and time
expressions satisfy the criteria for erasure specified above. The resulting
sentence after preprocessing is:

her bp at      on     from her                    heart was110/70.





This is the text that the value extractor uses for subsequent stages. Observe
that the erasure process preserves character offsets.



Candidate Selection

After preprocessing, the value extractor constructs a regular expression for
a query involving each search term. Simple term matching is not sufficient.
To understand why, consider a temperature query involving the term t.
Term matching would result in a match for every letter t in the text.

The query regex enforces the constraint that the search term can only be found
at a word boundary and not as a substring of another word. The query regex
accomodates variable amounts of whitespace, separators, and fill words.

The query regex is incorporated into a list of additional regular expressions.
These regexes each scan the sentence and attempt to recognize various contexts
from which to extract values. These contexts are, with examples:

1. A range involving two fractions connected by “between/and” or “from/to”:

BP varied from 110/70 to 120/80.





2. A range involving two fractions:

BP range: 105/75 - 120/70





3. A fraction:

BP lt. or eq 112/70





4. A range with explicit unit specifiers:

Platelets between 25k and 38k





5. A numeric range involving “between/and” or “from/to”:

Respiration rate between 22 and 32





6. A numeric range:

Respiration rate 22-32





7. A query of the general form <query_term> <operator> <value>:

The patient's pulse was frequently >= 60 bpm.





8. A query of the general form <query_term> <words> <value>:

Overall LVEF is severely depressed (20%).





Multiple regexes typically match a given query, so an overlap resolution
process is required to select the final result.



Overlap Resolution

If the value extractor finds more than one candidate for a given query, the
overlap resolution process prunes the candidates and selects a winner. The
rules for pruning candidates have been developed through many rounds of
iterated testing. More rules may be discovered in the future. The situations
requiring pruning and the rules for doing so are as follows:


	If two candidate results overlap exactly, return the result with the longest matching term.


	Example:

	
sentence:T=98 BP= 122/58  HR= 7 RR= 20  O2 sat= 100% 2L NC

termset:O2, O2 sat





	Candiates:

	
{"term":"O2",     "value":100, "text":"O2 sat= 100"}

{"term":"O2 sat", "value":100, "text":"O2 sat= 100"}







In this example, both “O2” and “O2 sat” match the value 100, and both
matches have identical start/end values. The value extractor returns
the candidate for “O2 sat” as the winner since it is the longer of the
two query terms and completely encompasses the other candidate.



	If two results partially overlap, discard the first match if the extracted value is contained within the search term for the second.


	Example:

	
sentence:BP 120/80 HR 60-80s RR  SaO2 96% 6L NC.

termset:RR, SaO2





	Candidates:

	
{"term":"RR",   "value":2,  "text":"RR  SaO2 96"}

{"term":"SaO2", "value":96, "text":"SaO2 96"}







Note that the search term RR has no matching value in the sentence,
so the value extractor keeps scanning and finds the 2 in “SaO2”. The 2
is part of a search term, not an independent value, so that candidate
result is discarded.



	(text mode only) Whenever two results overlap and one result is a terminating substring of the other, discard the candidate with the contained substring.


	Example:

	
sentence:no enteric gram negative rods found

termset:gram negative, negative

enumlist:rods





	Candidates:

	

{"term":"gram negative", "value":"rods", "text":"gram negative rods"}

{"term":"negative",      "value":"rods", "text":"negative rods"}






The second candidate is a terminating substring of the first and is
discarded. Note that this is a different situation from no. 1 above, since
the matching text for the candidates have different starting offsets.







	If two candidates have overlapping matching terms, keep the candidate with the longest matching term.



	Example:

	
sentence:BLOOD PT-10.8 PTT-32.6 INR(PT)-1.0

termset:pt, ptt, inr(pt)





	Candidates:

	
{"term":"pt",     "value":10.8, "text":"PT-10.8"}

{"term":"pt",     "value":1.0,  "text":"PT)-1.0"}

{"term":"ptt",    "value":32.6, "text":"PTT-32.6"}

{"term":INR(PT)", "value":1.0,  "text":"INR(PT)-1.0"}







The second and fourth candidates have overlapping matching query terms.
The longest matching term is INR(PT), so candidate four is retained and
candidate two is discarded. This is a different situation from no. 3 above,
which only applies in text mode.






	(text mode only) Keep both candidates if their matching terms are connected by “and” or “or”.



	Example:

	
sentence:which grew gram positive and negative rods

termset:gram positive, negative

enumlist:rods





	Candidates:

	
{"term":"gram positive", "value":"rods", "text":"gram positive and negative rods"}

{"term":"negative",      "value":"rods", "text":"negative rods"}







The matching texts for each candidate consts of query terms connected by the word “and”,
so both results are kept.






	If two candidates have overlapping matching text but nonoverlapping query terms, keep the candidate with query term closest to the value.



	Example:

	
sentence:received one bag of platelets dure to platelet count of 71k

termset:platelets, platelet, platelet count





	Candidates:

	
{"term":"platelets",      "value":71000, "text":"platelets due to platelet count of 71k"}

{"term":"platelet count", "value":71000, "text":"platelet count of 71k"}







These candidates have overlapping matching texts with nonoverlapping query
terms. Keep the candidate with query term “platelet count” since it is
closest to the value of 71000.








After these pruning operations, any remaining candidates that express
hypothetical conditions (see above) are discarded. The survivor(s) are
converted to JSON and returned as the result(s).

In general, users can expect the value extractor to return the first valid
numeric result following a query term.
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Measurement-Subject Resolution


Overview

Measurement-subject resolution is the process of associating size measurements
in a sentence with the object(s) possessing those measurements. For instance,
in the sentence

The spleen measures 7.5 cm.





the measurement 7.5 cm is associated with spleen. The word
spleen is said to be the subject of the measurement 7.5 cm. In this
example the subject of the measurement also happens to be the subject of the
sentence. This is not always the case, as the next sentence illustrates:

The liver is normal in architecture and echogenicity, and is seen to contain
numerous small cysts ranging in size from a few millimeters to approximately
1.2 cm in diameter.





Here the subject of the sentence is liver, but the subject of the
1.2 cm measurement is cysts.

In this document we describe how ClarityNLP analyzes sentences and attempts to
resolve subjects and measurements.



Source Code

The source code for the measurement subject finder is located in
nlp/algorithms/finder/subject_finder.py.


Inputs

The entry point to the subject finder is the run function:

	1
2
3
4

	def run(term_string,        # string, comma-separated list of query terms
        sentence,           # string, the sentence to be processed
        nosub=False,        # set to True to disable ngram substitutions
        use_displacy=False) # set to True to display a dependency parse








The term_string argument is a comma-separated list of query terms. The
nosub argument can be used to disable ngram substitution, described below.
The use_displacy argument generates an html page displaying a dependency
parse of the sentence. This visualization capability should only be used for
debugging and development.



Outputs

A JSON array containing these fields for each size measurement found:







	Field Name

	Explanation





	sentence

	the sentence from which size measurements  were extracted



	terms

	comma-separated list of query terms



	querySuccess

	“true” if at least one query term matched a measurement subject



	measurementCount

	the number of size measurements found



	measurements

	array of individual size measurements






Each result in the measurements array contains these fields:







	Field Name

	Explanation





	text

	text of the complete size measurement



	start

	offset of the first character in the matching text



	end

	offset of the final character in the matching text plus 1



	temporality

	indicartion of when measurement occurred
values are ‘CURRENT’ and ‘PREVIOUS’



	units

	units of the x, y, and z fields
values are ‘MILLIMETERS’, ‘SQUARE_MILLIMETERS’, and
‘CUBIC_MILLIMETERS’



	condition

	numeric ranges will have this field set to ‘RANGE’
all other measurements will set this field to ‘EQUAL’



	matchingTerm

	an array of all matching query terms for this measurement



	subject

	an array of strings, the possible measurement subjects



	location

	a string representing the anatomic location of the object



	x

	numeric value of first measurement dimension



	y

	numeric value of second measurement dimension



	z

	numeric value of third measurement dimension



	values

	JSON array of all numeric values in a size list



	xView

	view specification for x value



	yView

	view specification for y value



	zView

	view specification for z value



	minValue

	minimum value of x, y, and z



	maxValue

	maximum value of x, y, and z






All JSON results will have an identical number of fields. Any fields that are
not valid for a given measurement will have a value of EMPTY_FIELD and should be
ignored.



Dependencies

The measurement subject finder has a dependency on ClarityNLP’s size measurement
finder module, whose documentation can be found here:
Finding Size Measurements.

There is also a dependency on spaCy [https://spacy.io/], a python library for natural language
processing. The spaCy library was chosen for this project because it is fast
and produces consistently good results. We will have much more to say about
spaCy below.



NGram Generator

The subject finder module has the option of peforming ngram substitutions
with medical ngrams taken from a list (clarity_ngrams.txt) that accompanies
the source code. This file contains ngrams spanning lengths from 1 to 14 words.
The ngrams are stored by length in the file and sorted in decreasing order of
length.

The code that generates this file is found in ngram_gen.py, also in the
same folder. The ngram generator code ingests two source lists of medical terms
found in the files anatomic_sites.txt and medra_terms.txt. These files
are parsed, some cleanup is performed, and the lists are sorted and written
out as ngrams to clarity_ngrams.txt.

The ngrams in clarity_ngrams.txt are medical terms that are relatively
uncommon in standard English text, such as the text corpora that spaCy’s
English models were trained on. By replacing uncommon domain-specific terms
with more common nouns from everyday English discourse, we have found that we
can get substantial improvement in spaCy’s ability to analyze medical texts.
Several examples below illustrate this substitution process.



The spaCy Dependency Parse

The ClarityNLP subject finder module uses spaCy to generate a dependency parse
of each input sentence. A dependency parse provides part of speech tags
for each word as well as dependency information encoded in tree
form. To illustrate, here is a diagram of a dependency parse of the sentence
The girl has a flower in her hair.

[image: ../../_images/displacy_girl_flower.png]
This diagram was generated with spaCy’s display tool displacy [https://spacy.io/usage/visualizers]. The part of
speech tags appear underneath each word. In addition to
NOUN, VERB, and ADJ, we also see DET (determiner) and ADP (preposition).
Documentation on spaCy’s annotation scheme can be found here [https://spacy.io/api/annotation].

The arrows represent a child-parent relationship, with the child being at the
“arrow” or “head” end and the the parent at the tail end. The word at the
arrow end modifies the word at the tail end. Thus the word The modifies
girl, since the first arrow starts at the word girl and points to
the word The. The label on the arrow indicates the nature of
the parent-child relationship. For the “girl-The” arrow, the det
label on the arrow indicates that the word The is a determiner that
modifies girl.

The subject of the verb has is the word girl, as indicated by the
nsubj (nominal subject) label on the second arrow. The direct object of
the verb is the noun flower, as the arrow labeled dobj shows.
The direct object has a DET modifer a, similarly to the DET modifier for
the word girl.

A prepositional phrase in her hair follows the direct object, as the
two arrows labeled prep (prepositional modifier) and pobj
(object of preposition) indicate. The object of the preposition
in is the noun hair, which has a possession modifier
her.

Thus a dependency parse allows one to determine the nature of the
relationships between the various components of a sentence. ClarityNLP uses the
dependency parse information, along with a set of custom rules and heuristics,
to determine the subjects of each size measurement.



Dependency Parse Errors

Sometimes spaCy generates an incorrect dependency parse. This happens often
in sentences that contain medical terminology, especially when medical terms
are used in different contexts from those of the training corpora.
For instance, the simple sentence

The spleen measures 7.5 cm.





has this dependency parse:

[image: ../../_images/displacy_spleen_incorrect.png]
Here we see that the verb measures was tagged as a noun, in the sense of
“weights and measures”. The word spleen was also tagged as an adjective.
This is obviously incorrect. The problem, though, lies with the word
spleen instead of measures. Observe what happens to the dependency
parse if spleen is replaced by the common noun car:

[image: ../../_images/displacy_car_correct.png]
This is the correct result: car is tagged as a noun, measures is
tagged a verb, and the nominal subject of the sentence is car.

One can imagine the extent to which obscure medical jargon could completely
confuse spaCy. In the absence of a version of spaCy trained on medical texts,
ClarityNLP attempts to overcome such problems by replacing medical ngrams with
common English nouns. The resulting sentence does not have to “make sense”.
All it needs to do is help spaCy produce the correct dependency parse of
the sentence and correctly resolve the relationships between the various
phrases. The substitution process is not foolproof either, but we observe
consistently better results on medical texts with the ngram substitutions
than without them.

To further help spaCy’s decision processes, spaCy provides a mechanism for
introducing special case tokenization rules [https://spacy.io/usage/linguistic-features#special-cases]. ClarityNLP takes advantage of
this by introducing four special case rules for measure and related verbs.
The next code block shows how ClarityNLP accomplishes this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	# 'measures' is a 3rd person singular present verb
special_case = [{ORTH: u'measures', LEMMA: u'measure', TAG: u'VBZ', POS: u'VERB'}]
nlp.tokenizer.add_special_case(u'measures', special_case)

# 'measure' is a non 3rd person singular present verb
special_case = [{ORTH: u'measure', LEMMA: u'measure', TAG: u'VBP', POS: u'VERB'}]
nlp.tokenizer.add_special_case(u'measure', special_case)

# 'measured' is a verb, past participle
special_case = [{ORTH: u'measured', LEMMA: u'measure', TAG: u'VBN', POS: u'VERB'}]
nlp.tokenizer.add_special_case(u'measured', special_case)

# 'measuring' is a verb form, either a gerund or present participle
special_case = [{ORTH: u'measuring', LEMMA: u'measure', TAG: u'VBG', POS: u'VERB'}]
nlp.tokenizer.add_special_case(u'measuring', special_case)








Here ORTH refers to orthography, the actual sequence of letters appearing
in the text. LEMMA is the canonical or “dictionary” form of the verb,
identical in all cases. The TAG entry refers to the part of speech tag using
Penn Treebank Notation [https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html]. The POS entry is spaCy’s notation [https://spacy.io/api/annotation#pos-tagging]
for the same part of speech tag.

These rules guarantee that spaCy will interpret the words measures,
measure, measured, and measuring as verbs.

The words that ClarityNLP substitutes for medical ngrams are:

car, city, year, news, math, hall, poet, fact,
idea, oven, poem, dirt, tale, world, hotel





These are all common English words that only occur as nouns.

One additional illustration can help to make this process clearer.
Consider this sentence:

There is a fusiform infrarenal abdominal aortic aneurysm measuring M.





The dependency parse for this sentence, using the special tokenization rules,
is:

[image: ../../_images/displacy_fusiform_error.png]
The most obvious problem here is that the word aneurysm, which is a noun,
has been tagged with ADP, indicating either a conjunction or preposition.
The adjective fusiform was also not deduced to be a modifier of aneurysm.

Since the ngram abdominal aortic aneurysm is in the ClarityNLP ngram list,
substituting car for abdominal aortic aneurysm produces this
sentence:

There is a fusiform infrarenal car measuring M.





The dependency parse for this new sentence is:

[image: ../../_images/displacy_fusiform_correct.png]
Here we see that the word car, a very common English word, has been
correctly tagged as a noun. The adjective fusiform now modifies car,
as it should. The ngram substitution has thus helped spaCy produce a correct
dependency parse.  Even though the sentence doesn’t make sense, the purpose
of the substitutions is not to preserve the meaning of the sentence.
Substitutions help spaCy generate a correct dependency parse, allowing
the proper relationships among the various sentence components to be
determined.




Algorithm

ClarityNLP uses several stages of processing in its attempt to resolve the
subject of each size measurement. These processing stages are:


	Sentence cleanup and ngram substitution


	Sentence template determination


	Dependency parse analysis and selection of candidate subjects


	Subject resolution and location determination


	Ngram replacement and JSON conversion





Sentence Cleanup and NGram Substitution

The cleanup stage attempts to simplify the sentence as
much as possible. A shorter sentence is more likely to be parsed correctly
than a needlessly verbose sentence. Thus ClarityNLP removes all extraneous
text from the sentence that has no bearing on the measurement-subject
resolution problem. Thse removals include:


	Removing image annotations, such as (image 302:33), (782b:49)


	Removing anything in square or curly brackets, such as anonymized dates


	Removing excess verbosity, such as “for example”, “in addition”,
“no evidence of”, etc.


	Replacing verbose forms with less verbose forms, such as:


	“measuring upwards of” => “measuring”


	“is seen to contain” => “contains”


	“is seen in” => “in”


	etc.






	Replacing roman numerals with decimal numbers


	Replacing semicolons with whitespace (misplaced semicolons can have a
deleterious effect on the dependency parse)


	Substituting simple nouns for medical ngrams


	Collapsing repeated whitespace into a single space


	Finding size measurements and replacing the measurement text with M




This last item deserves some explanation. The sentence

The spleen measures 7.5 cm.





is transformed by the measurement replacement operation to this:

The spleen measures M.





The reason for the M-replacement is to facilitate the recognition of sentence
patterns in the text. We call these sentence patterns “sentence templates”.
Sentences that fit a common template pattern provide clues about the sentence
structure and can be analyzed in identical ways. For instance, size
measurements in medical texts are often reported as

{Something} measures {size_measurement}.





Some examples:

The spleen is unremarkable measuring 8.6 cm.
The cyst in the upper pole of the kidney measures 1.2 cm.
The duct tapers smoothly to the head of the pancreas,
where it measures approximately 5 mm.





After M-replacement, these sentences become:

The spleen is unremarkable measuring M.
The cyst in the upper pole of the kidney measures M.
The duct tapers smoothly to the head of the pancreas,
where it measures approximately M.





A regular expression designed to find a capital M preceded by a measurement
verb could easily identify all of these sentences as belonging to the same
underlying template. Custom rules for each matching sentence could be applied
to resolve the object having measurement M. ClarityNLP uses this approach for
this template and the others described below.



Sentence Template Determination

ClarityNLP uses a set of sentence patterns or templates to help it resolve
measurements and their subjects. These templates were determined by examining
a large number of electronic health records and noting common forms of
expression. A set of regular expressions was developed for classifying
sentences into the various patterns. This set of regexes and sentence
patterns will likely expand as ClarityNLP evolves.

For the discussion below, it is helpful to define a few items, using a
notation similar to that for regular expressions:







	Abbreviation

	Examples





	MEAS

	“measure”, “measures”, “measured”, “measuring”



	WORD

	a word or number, with optional punctuation and spaces



	||

	string concatenation



	*

	zero or more of the previous item



	+

	one or more of the previous item



	*?, +?

	nongreedy version of * or +



	M

	size measurement



	Q

	measurement qualifiers: “all”, “approximately”,
“currently”, “mainly”, etc.



	DET

	determiners: “a”, “an”, “the”



	TERMINATOR

	“a”, “an”, or MEAS






The templates used by ClarityNLP are:

1. Subject Measures M

This template, illustrated above, recognizes sentences or sentence fragments
containing an explicit measurement verb. The subject of the measurement M
is generally in the set of words preceding MEAS.

Pattern:


WORD+ || MEAS || WORD* || M



2. DET Words M

This template recognizes sentences or sentence fragments that omit an
explicit measurement verb. For instance:


“An unchanged 2cm hyperechoic focus…”

“…and has a simple 1.2 x 2.9 x 2.9 cm cyst…”



Greedy and nongreedy patterns:


DET || WORD+ || Q* || M || WORD+

DET || WORD+ || Q* || M || WORD+? || TERMINATOR



3. DET M Words

Same as #2, but with the words in a different order. Examples:


“A 3cm node in the right low paratracheal station…”

“The approximately 1 cm cyst in the upper pole of the left kidney…”



Greedy and nongreedy patterns:


DET || Q* || M || WORD+

DET || Q* || M || WORD+? || TERMINATOR



4. Ranging in Size

The phrase “ranging in size” occurs frequently in diagnostic medical reports.
ClarityNLP substitutes the verb “measuring” for
“ranging in size” and then applies the Subject Measures M template to
the sentence. An example:

“Distended gallbladder with multiple stones ranging in size from a few millimeters to 1 cm in diameter.”

5. Now vs. Then

This template recognizes sentences comparing measurements taken on
different dates. For instance:


“The lesion currently measures 1.3 cm and previously measured 1.2 cm.”

“A left adrenal nodule measures 1.2 cm as compared to 1.0 cm previously.”



ClarityNLP uses a set of seven regexes in its attempts to find such sentences.
The first regex is used to match the first measurement of the pair, and the
others are used to match the second measurement.

6. Before and After

This template recognizes sentences and sentence fragments with measurement
subjects occurring before and after each measurement. For example:

“The left kidney measures 8.5 cm and contains an 8 mm x 8 mm anechoic
rounded focus along the lateral edge, which is most likely a simple
renal cyst.”

Pattern:


DET || WORDS+ | MEAS || Q* || M || WORD* || DET || M || WORDS+



ClarityNLP searches for measurement subjects in each WORDS+ group captured by the
associated regex.

7. M and M

This template recognizes sentences comparing two similar objects, two
views of an object, or an object and features inside it.  For instance:

“The lower trachea measures 14 x 8 mm on expiratory imaging and 16 x 17 mm on inspiratory imaging.”

“The largest porta hepatis lymph node measures 1.6 cm in short axis and 2.6 cm in long axis.”

Pattern 1:


WORD* || MEAS || Q* || M || WORD* || and || WORD*



Pattern 2:


WORD+ || MEAS || Q* || M || WORD* || and || WORD+ || to || Q* || M || WORD+



8. Carina

This is a special case template for sentences involving endotracheal tubes
and distances relative to the carina. An example sentence:

“Endotracheal tube is in standard position about 5 cm above the carina.”


Template Matching

ClarityNLP counts the number of M’s in the sentence after the cleanup phase and
attempts template matching on fragments containing either one or two M’s.
Sentences or fragments matching a template are sent to the next stage of
processing, dependency parse analysis, described below. If no templates match,
ClarityNLP attempts a dependency parse analysis without having the benefit of
knowing the sentence structure via a template match. ClarityNLP will attempt
measurement-subject resolution on sentences containing as many as three
measurements.




Dependency Parse Analysis

After the template matching phase completes, ClarityNLP uses spaCy to generate
a dependency parse of the sentence or fragment that matched the template.
ClarityNLP uses the dependency parse information and a set of custom rules to
navigate the parse tree looking for the measurement subject. This is typically
the noun modified by the measurement itself. For simple sentences this noun is
relatively easy to find, since it is often the subject of the sentence. For
more complex sentences, ClarityNLP must navigate the (sometimes incorrect) parse
tree using a set of heuristics, custom rules, and corrective actions in an
attempt to find the subject. The actual algorithm itself is complex and
involves handling of many specal cases, many of which were developed to
correct errors in the parse tree. The full algorithm can be found in the
function get_meas_subject in the file nlp/finder/subject_finder.py.


Finding the Starting Token

ClarityNLP begins its examination of the parse tree by searching for the token
with text “M” (which has replaced the measurement(s)). If this token is not
its own parent, meaning that it is a child node of another token, Clarity
starts its processing with the parent of the M node. If the M node is its
own parent, ClarityNLP looks for the verb token nearest the M token as its
starting point. If a verb cannot be found, ClarityNLP looks for a dependency of
nsubj or compound and takes whichever it can find. If none of these
can be found, ClarityNLP gives up on finding a starting token and returns an
empty subject.



Navigating the Parse Tree

After finding a starting token, ClarityNLP then begins to navigate the parse
tree, searching for a measurement subject. Both the part of speech tag
and the dependency relationship contribute to ClarityNLP’s decision at each node.

The first determination ClarityNLP makes is whether it has arrived at the root
node or not. If it happens to be at the root node, it can go no further in
the tree, so it looks for a measurement subject (noun) amongst the children
of the root node, if any.

If a verb is encountered when navigating the parse tree, a check is made on
the dependency for the verb token. If it is “nsubj”, meaning the nominal
subject of the sentence, experimentation suggests that the part of speech
tag was probably incorrectly set to VERB instead of NOUN. The token is saved
and used as a candidate subject. If the verb is a measurement verb, the parent
token is selected as a candidate subject.

If a noun is encountered, ClarityNLP’s decision depends on the dependency label
for the token. Some dependency relationships are ignorable, which means that
the parent node linked to a child with an ignorable dependency cannot be the
measurement subject. These ignorable dependency relationships are:







	Dependency

	Meaning





	acomp

	adjectival complement



	attr

	attribute



	conj

	conjunct



	dobj

	direct object



	pcomp

	complement of preposition



	pobj

	object of preposition



	prep

	preposition






Any noun token linked to its parent via an ignorable dependency is skipped, and
ClarityNLP moves up one level in the tree to the parent node.

ClarityNLP applies several other empirically determined rules for handling special
cases, such as when it encounters the preposition “with”.  Normally
prepositions are ignored during tree navigation by continuing on to their
parent node. The word “with” deserves special handling, because sometimes it
is used as a conjunction to link two clauses that could have been independent
sentences. To illustrate, consider these sentences:

“There is extensive, pronounced cervical lymphadenopathy throughout levels II
through IV, with lymph nodes measuring up to 2 cm.”

“…as well as a more confluent plaque-like mass with a broad
base along the tentorial surface measuring approximately 2 cm in greatest
dimension.”

In the first example, the preposition “with” separates two independent
clauses and is used as a conjuction. The subject of the 2 cm measurement is
“lymph nodes”, which happens to be the object of the preposition “with”.
In this case the objects of the preposition “with” cannot be ignored.

In the second example, the preposition “with” has an object that can be
ignored. The subject of the 2 cm measurement, “mass”, is not part of the
prepositional phrase associated with the word “with”.

ClarityNLP is not always able to resolve these two usages of “with” in all
instances. So whenever it encounters the preposition “with”, it saves the
object of that preposition as a candidate measurement subject and continues
navigating the tree.



Subject Resolution and Location Determination

The preceding phase of processing results in a list of candidate subjects.
If the list is empty, ClarityNLP was unable to find a subject. If the list
is nonempty, any duplicates are removed. If only one subject remains it
is chosen as the subject.

If multiple candidate subjects remain, the noun chunks obtained from spaCy’s
analysis of the sentence helps to select the best candidate. The chunks
containing each candidate subject are found, and the distance (in words) from
the measurement verb (if any) and the associated measurement are computed.
ClarityNLP then chooses the candidate that is either within the same noun chunk as
the measurement, or which is the closest candidate to that particular chunk.

ClarityNLP also attempts to find the anatomical location for each measurement
subject. To do so, it uses information from the template match to identify
the most likely sentence fragment that could contain the location. A set of
location-finding regexes then attempts to match the fragment and identify
the location. Various special-case rules are applied to any matches found,
to remove any matches that happen to not actually be locations, and to remove
extraneous words. Any remaining text then becomes the location for the
measurement.

If location matching fails for all sentence fragments, or if the sentence
failed to match a template altogether, ClarityNLP makes one final attempt to
determine a location on the sentence as a whole, using the location-finding
regexes and the process described above.



Ngram replacement and JSON conversion

The final stage of processing adds additional modifiers to the chosen subject.
ClarityNLP performs a recursive depth-first search through the parse tree to
capture all modifiers of the subject, any modifiers of the modifiers, etc.
A depth-first search is needed to keep the modifiers in the proper word order
as they are discovered.

After all modifiers of the subject have been found, the ngram substitution
process is reversed, restoring the original words of the sentence. The
list of measurements, along with their subjects and locations, is converted
to JSON and returned as the result.







          

      

      

    

  

    
      
          
            
  
NLPQL Expression Evaluation


Overview

In this section we describe the mechanisms that ClarityNLP uses to evaluate
NLPQL expressions. NLPQL expressions are found in define statments such as:

define hasFever:
    where Temperature.value >= 100.4;

define hasSymptoms:
    where hasFever AND (hasDyspnea OR hasTachycardia);





The expressions in each statement consist of everything between the where
keyword and the semicolon:

Temperature.value >= 100.4

hasFever AND (hasDyspnea OR hasTachycardia)





NLPQL expressions can either be mathematical or logical in nature, as these
examples illustrate.

Recall that the processing stages for a ClarityNLP job proceed roughly as
follows:


	Parse the NLPQL file and determine which NLP tasks to run.


	Formulate a Solr query to find relevant source documents, partition the
source documents into batches, and assign batches to computational tasks.


	Run the tasks in parallel and write individual task results to MongoDB.
Each individual result from an NLP task comprises a task result document
in the Mongo database. The term document is used here in the MongoDB
sense, meaning an object containing key-value pairs. The MongoDB ‘documents’
should not be confused with the Solr source documents, which are electronic
health records.


	Evaluate NLPQL expressions using the task result documents as the source
data. Write expression evaluation results to MongoDB as separate result
documents.




Thus ClarityNLP evaluates expressions after all tasks have finished running
and have written their individual results to MongoDB. The expression evaluator
consumes the task results inside MongoDB and uses them to generate new results
from the expression statements.

We now turn our attention to a description of how the expression evaluator
works.

The expression evaluator is built upon the
MongoDB aggregation [https://docs.mongodb.com/manual/aggregation/]
framework. Why use MongoDB aggregation to evaluate NLPQL expressions? The basic
reason is that ClarityNLP writes results from each run to a MongoDB collection,
and it is more efficient to evaluate expressions using MongoDB facilities
than to use something else. Use of a non-Mongo evaluator would require
ClarityNLP to:


	Run a set of queries to extract the data from MongoDB


	Transmit the query results across a network (if the Mongo instance is hosted
remotely)


	Ingest the query results into another evaluation engine


	Evaluate the NLPQL expressions and generate results


	Transmit the results back to the Mongo host (if the Mongo instance is hosted
remotely)


	Insert the results into MongoDB.




Evaluation via the MongoDB aggregation framework is more efficient than this
process, since all data resides inside MongoDB.



NLPQL Expression Types

In the descriptions below we refer to NLPQL variables, which have the
form nlpql_feature.field_name. The NLPQL feature is a label introduced in a
define statement. The field_name is the name of an output field
generated by the task associated with the NLPQL feature.

The output field names from ClarityNLP tasks can be found in the
NLPQL Reference.


1. Simple Mathematical Expressions

A simple mathematical expression is a string containing NLPQL variables,
operators, parentheses, or numeric literals. Some examples:

Temperature.value >= 100.4
(Meas.dimension_X > 5) AND (Meas.dimension_X < 20)
(0 == Temperature.value % 20) OR (1 == Temperature.value % 20)





The variables in a simple mathematical expression all refer to a single
NLPQL feature.

Simple mathematical expressions produce a result from data contained in a
single task result document. The result of the expression evaluation is
written to a new MongoDB result document.



2. Simple Logic Expressions

A simple logic expression is a string containing NLPQL features,
parentheses, and the logic operators AND, OR, and NOT.
For instance:

hasRigors OR hasDyspnea
hasFever AND (hasDyspnea OR hasTachycardia)
(hasShock OR hasDyspnea) AND (hasTachycardia OR hasNausea)
(hasFever AND hasNausea) NOT (hasRigors OR hasDyspnea)





Logic expressions operate on high-level NLPQL features, not on numeric
literals or NLPQL variables. The presence of a numeric literal or NLPQL
variable indicates that the expression is either a mathematical expression
or possibly invalid.

Simple logic expressions produce a result from data contained in one or more
task result documents. In other words, logic expressions operate on sets
of result documents. The result from the logical expression evaluation
is written to one or more new MongoDB result documents (the details will be
explained below).

The NOT operator requires additional commentary. ClarityNLP supports the
use of NOT as a synonym for “set difference”. Thus A NOT B means
all elements of set A that are NOT also elements of set B. The use of
NOT to mean “set complement” is not supported. Hence expressions such as
NOT A, NOT hasRigors, etc., are invalid NLPQL statements. The NOT
operator must appear between two other expressions.



3. Mixed Expressions

A mixed expression is a string containing either:


	A mathematical expression and a logic expression


	A mathematical expression using variables involving two or more NLPQL features




For instance:

// both math and logic
(Temperature.value >= 100.4) AND (hasDyspnea OR hasTachycardia)

// two NLPQL features: LesionMeasurement and Temperature
(LesionMeasurement.dimension_X >= 10) OR (Temperature.value >= 100.4)

// math, logic, and multiple NLPQL features
Temperature.value >= 100.4 AND (hasRigors OR hasNausea) AND (LesionMeasurement.dimension_X >= 15)





The evaluation mechanisms used for mathematical, logic, and mixed expressions
are quite different. To fully understand the issues involved, it is helpful to
first understand the meaning of the ‘intermediate’ and ‘final’ phenotype
results.



Phenotype Result CSV Files

Upon submission of a new job, ClarityNLP prints information to stdout that
looks similar to this:

HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 1024
Access-Control-Allow-Origin: *
Server: Werkzeug/0.14.1 Python/3.6.4
Date: Fri, 23 Nov 2018 18:40:38 GMT
{
   "job_id": "11108",
   "phenotype_id": "11020",
   "phenotype_config": "http://localhost:5000/phenotype_id/11020",
   "pipeline_ids": [
        12529,
        12530,
        12531,
        12532,
        12533,
        12534,
        12535
    ],
    "pipeline_configs": [
        "http://localhost:5000/pipeline_id/12529",
        "http://localhost:5000/pipeline_id/12530",
        "http://localhost:5000/pipeline_id/12531",
        "http://localhost:5000/pipeline_id/12532",
        "http://localhost:5000/pipeline_id/12533",
        "http://localhost:5000/pipeline_id/12534",
        "http://localhost:5000/pipeline_id/12535"
    ],
    "status_endpoint": "http://localhost:5000/status/11108",
    "results_viewer": "?job=11108",
    "luigi_task_monitoring": "http://localhost:8082/static/visualiser/index.html#search__search=job=11108",
    "intermediate_results_csv": "http://localhost:5000/job_results/11108/phenotype_intermediate",
    "main_results_csv": "http://localhost:5000/job_results/11108/phenotype"
}





Here we see various items relevant to the job submission. Each submission
receives a job_id, which is a unique numerical identifier for the run.
ClarityNLP writes all task results from all jobs to the phenotype_results
collection in a Mongo database named nlp. The job_id is
needed to distinguish the data belonging to each run. Results can be extracted
directly from the database by issuing MongoDB queries [https://docs.mongodb.com/manual/tutorial/query-documents/].

We also see URLs for ‘intermediate’ and ‘main’ phenotype results. These are
convenience APIs that export the results to CSV files. The data in the
intermediate result CSV file contains the output from each NLPQL
task not marked as final. The main result CSV contains the results
from any final tasks or final expression evaluations. The CSV file can be
viewed in Excel or in another spreadsheet application.

Each NLP task generates a result document distinguished by a particular value
of the nlpql_feature field. The define statement

define hasFever:
     where Temperature.value >= 100.4;





generates a set of rows in the intermediate CSV file with the
nlpql_feature field set to hasFever.  The NLP tasks

// nlpql_feature 'hasRigors'
define hasRigors:
    Clarity.ProviderAssertion({
        termset: [RigorsTerms],
        documentset: [ProviderNotes]
    });

// nlpql_feature 'hasDyspnea
define hasDyspnea:
    Clarity.ProviderAssertion({
        termset: [DyspneaTerms],
        documentset: [ProviderNotes]
    });





generate two blocks of rows in the CSV file, the first block having the
nlpql_feature field set to hasRigors and the next block having it
set to hasDyspnea.  The different nlpql_feature blocks appear in order
as listed in the source NLPQL file. The presence of these nlpql_feature
blocks makes locating the results of each NLP task a relatively simple
matter.




Expression Evaluation Algorithms

ClarityNLP evaluates expressions via a multi-step procedure. In this section
we describe the different processing stages.


Expression Tokenization and Parsing

The NLPQL front end parses the NLPQL file and sends the raw expression text
to the evaluator (nlp/data_access/expr_eval.py). The evaluator module
parses the expression text and converts it to a fully-parenthesized token
string. The tokens are separated by whitespace and all operators are replaced
by string mnemonics (such as GE for the operator >=, LT for the
operator <, etc.).

If the expression includes any subexpressions involving numeric literals, they
are evaluated at this stage and the literal subexpression replaced with the
result.



Validity Checks

The evaluator then runs validity checks on each token. If it finds a token that
it does not recognize, it tries to resolve it into a series of known NLPQL
features separated by logic operators. For instance, if the evaluator were
to encounter the token hasRigorsANDhasDyspnea under circumstances in which
only hasRigors and hasDyspnea were valid NLPQL features, it would
replace this single token with the string hasRigors AND hasDyspnea.  If it
cannot perform the separation (such as with the token
hasRigorsA3NDhasDyspnea) it reports an error and writes error information
into the log file.

If the validity checks pass, the evaluator next determines the expression type.
The valid types are EXPR_TYPE_MATH, EXPR_TYPE_LOGIC, and
EXPR_TYPE_MIXED. If the expression type cannot be determined, the evaluator
reports an error and writes error information into the log file.



Subexpression Substitution

If the expression is of mixed type, the evaluator locates all simple math
subexpressions contained within and replaces them with temporary NLPQL feature
names, thereby converting math subexpressions to logic subexpressions. The
substitution process continues until all mathematical
subexpressions have been replaced with substitute NLPQL features, at which
point the expression type becomes EXPR_TYPE_LOGIC.

To illustrate the substitution process, consider one of the examples from
above:

Temperature.value >= 100.4 AND (hasRigors OR hasNausea) AND (LesionMeasurement.dimension_X >= 15)





This expression is of mixed type, since it contains the mathematical
subexpression Temperature.value >= 100.4, the logic subexpression
(hasRigors OR hasNausea), and the mathematical subexpression
(LesionMeasurement.dimension_X >= 15). The NLPQL features in each math
subexpression, Temperature and LesionMeasurement, also differ.

The evaluator identifies the Temperature subexpression and replaces it with a
substitute NLPQL feature, m0 (for instance). This transforms the original
expression into:

(m0) AND (hasRigors OR hasNausea) AND (LesionMeasurement.dimension_X >= 15)





Now only one mathematical subexpression remains.

The evaluator again makes a substitution m1 for the remaining mathematical
subexpression, which converts the original into

(m0) AND (hasRigors OR hasNausea) AND (m1)





This is now a pure logic expression.

Thus the substitution process transforms the original mixed-type
expression into three subexpressions, each of which is of simple math
or simple logic type:

subexpression 1 (m0): 'Temperature.value >= 100.4'
subexpression 2 (m1): 'LesionMeasurement.dimension_X >= 15'
subexpression 3:      '(m0) AND (hasRigors OR hasNausea) AND (m1)'





By evaluating each subexpression in order, the result of evaluating the
original mixed-type expression can be obtained.




Evaluation of Mathematical Expressions


Removal of Unnecessary Parentheses

The evaluator next removes all unnecessary pairs of parentheses from the
mathematical expression. A pair of parentheses is unnecessary if it can be
removed without affecting the result. The evaluator detects changes in the
result by converting the expression with a pair of parentheses removed to
postfix, then comparing the postfix form with that of the original. If the
postfix expressions match, that pair of parentheses was non-essential and
can be discarded. The postfix form of the expression has no parentheses, as
described below.



Conversion to Explicit Form

After removal of nonessential parentheses, the evaluator rewrites the
expression so that the tokens match what’s actually stored in the database.
This involves an explicit comparison for the NLPQL feature and the
unadorned use of the field name for variables. To illustrate, consider the
hasFever example above:

define hasFever:
    where Temperature.value >= 100.4;





The expression portion of this define statement is
Temperature.value >= 100.4. The evaluator rewrites this as:

(nlpql_feature == Temperature) AND (value >= 100.4)





In this form the tokens match the fields actually stored in the task result
documents in MongoDB.



Conversion to Postfix

Direct evaluation of an infix expression is complicated by parenthesization and
operator precedence issues. The evaluation process can be greatly simplified by
first converting the infix expression to postfix form. Postfix expressions
require no parentheses, and a simple stack-based evaluator can be used to
evaluate them directly.

Accordingly, a conversion to postifx form takes place next. This conversion
process requires an operator precedence table. The NLPQL operator precedence
levels match those of Python and are listed here for reference. Lower numbers
imply lower precedence, so or has a lower precedence than and, which
has a lower precedence than +, etc.







	Operator

	Precedence Value





	(

	0



	)

	0



	or

	1



	and

	2



	not

	3



	<

	4



	<=

	4



	>

	4



	>=

	4



	!=

	4



	==

	4



	+

	9



	-

	9



	*

	10



	/

	10



	%

	10



	^

	12






Conversion from infix to postfix is unambiguous if operator precedence and
associativity are known. Operator precedence is given by the table above.
All NLPQL operators are left-associative except for exponentiation, which is
right-associative. The infix-to-postfix conversion algorithm is the standard
one and can be found in the function _infix_to_postfix in the file
nlp/data_access/expr_eval.py.

After conversion to postfix, the hasFever expression becomes:

'nlpql_feature', 'Temperature', '==', 'value', '100.4', '>=', 'and'







Generation of the Aggregation Pipeline

The next task for the evaluator is to convert the expression into a sequence of
MongoDB aggregation pipeline stages. This process involves the generation of an
initial $match [https://docs.mongodb.com/manual/reference/operator/aggregation/match/]
query to filter out everything but the data for the current job. The match query
also checks for the existence of all entries in the field list and that they
have non-null values. A simple existence check is not sufficient, since a
null field actually exists but has a value that cannot be used for computation.
Hence checks for existence and a non-null value are both necessary.

For the hasFever example, the initial match query generates a pipeline
filter stage that looks like this, assuming a job_id of 12345:

{
    "$match": {
        "job_id": 12345,
        "nlpql_feature": {"$exists":True, "$ne":None},
        "value"        : {"$exists":True, "$ne":None}
    }
}





This match pipeline stage runs first and performs coarse filtering on the
data in the result database. It finds only those task result documents
matching the specified job_id, and it further restricts consideration to
those documents having valid entries for the expression’s fields.



Subsequent Pipeline Stages

After generation of the initial match filter stage, the postfix expression
is then ‘evaluated’ by a stack-based mechanism. The result of the evaluation
process is not the actual expression value, but instead a set of MongoDB
aggregation commands that tell MongoDB how to compute the result. The
evaluation process essentially generates Python dictionaries that obey the
aggregation syntax rules. More information about the aggregation pipeline can
be found here [https://docs.mongodb.com/manual/aggregation/].

The pipeline actually does a
$project [https://docs.mongodb.com/manual/reference/operator/aggregation/project/]
operation and creates a new document with a Boolean field called value.
This field has a value of True or False according to whether the source
document satisfied the mathematical expression. The _id field of the
projected document matches that of the original, so that a simple query on
these _id fields can be used to recover the desired documents.

The final aggregation pipeline for our example becomes:

// (nlpql_feature == Temperature) and (value >= 100.4)
{
   "$match": {
       "job_id":12345
       "nlpql_feature": {"$exists":True, "$ne":None},
       "value"        : {"$exists":True, "$ne":None}
   }
},
{
    "$project" : {
        "value" : {
            "$and" : [
                {"$eq"  : ["$nlpql_feature", "Temperature"]},
                {"$gte" : ["$value", 100.4]}
            ]
        }
    }
}





The completed aggregation pipeline gets sent to MongoDB for evaluation.
Mongo performs the initial filtering operation, applies the subsequent
pipeline stages to all surviving documents, and sets the “value” Boolean
result. A final query extracts the matching documents and writes new result
documents with an nlpql_feature field equal to the label from the
define statement, which for this example would be hasFever.




Evaluation of Logic Expressions

The initial stages of the evaluation process for logic expressions proceed
similarly to those for mathematical expressions. Unnecessary parentheses are
removed and the expression is converted to postfix.


Detection of n-ary AND and OR

After the postfix conversion, a pattern matcher looks for instances of n-ary
AND and/or OR in the set of postfix tokens. An n-ary OR would look
like this, for n == 4:

// infix
hasRigors OR hasDyspnea OR hasTachycardia OR hasNausea

// postfix
hasRigors hasDyspnea OR hasTachycardia OR hasNausea OR





The n-value refers to the number of operands.  All such n-ary instances are
replaced with a variant form of the operator that includes the count. The
reason for this is that n-ary AND and OR can be handled easily by the
aggregation pipeline, and their use simplifies the pipeline construction
process. For this example, the rewritten postfix form would become:

hasRigors hasDyspnea hasTachycardia hasNausea OR4







Generation of the Aggregation Pipeline

As with mathematical expressions, the logic expression aggregation pipeline
begins with an initial stage that filters on the job_id and checks that the
nlpql_feature field exists and is non-null. No explicit field checks are
needed since logic expressions do not use NLPQL variables. For a job_id of
12345, this inital filter stage is:

{
    "$match": {
        "job_id":12345
        "nlpql_feature": {"$exists":True, "$ne":None}
    }
}





Following this is another filter stage that removes all docs not having the
desired NLPQL features. For the original logic expression example above:

hasFever AND (hasDyspnea OR hasTachycardia)





this second filter stage would look like this:

{
    "$match": {
        "nlpql_feature": {"$in": ['hasFever', 'hasDyspnea', 'hasTachycardia']}
    }
}







Grouping by Value of the Context Variable

The next stage in the logic pipeline is to group documents by the value of
the context field. Recall that NLPQL files specify a context of either
‘document’ or ‘patient’, meaning that a document-centric or patient-centric
view of the results is desired. In a document context, ClarityNLP needs to
examine all data pertaining to a given document. In a patient context, it needs
to examine all data pertaining to a given patient.

The grouping operation collects all such data (the ClarityNLP task result
documents) that pertain to a given document or a given patient. Documents are
distinguished by their report_id field, and patients are distinguished by
their patient IDs, which are stored in the subject field. You can
think of these groups as being the ‘evidence’ for a given document or for
a given patient. If the patient has the conditions expressed in the NLPQL
file, the evidence for it will reside in the group for that patient.

As part of the grouping operation ClarityNLP also generates a set of NLPQL
features for each group. This set is called the feature_set and it will be
used to evaluate the expression logic for the group as a whole.

The grouping pipeline stage looks like this:

{
    "$group": {
        "_id": "${0}".format(context_field),

        # save only these four fields from each doc; more efficient
        # than saving entire doc, uses less memory
        "ntuple": {
            "$push": {
                "_id": "$_id",
                "nlpql_feature": "$nlpql_feature",
                "subject": "$subject",
                "report_id": "$report_id"
            }
        },
        "feature_set": {"$addToSet": "$nlpql_feature"}
    }
}





Here we see the
$group [https://docs.mongodb.com/manual/reference/operator/aggregation/group/]
operator grouping the documents on the value of the context field. An
ntuple array is generated for each different value of the context variable.
This is the ‘evidence’ as discussed above. Only the essential fields for each
document are used, which reduces memory consumption and improves efficiency.
We also see the generation of the feature set for each group, in which each
NLPQL feature for the group’s documents is added to the set.

At the conclusion of this pipeline stage, each group has two fields: an
ntuple array that contains the relevant data for each document in the
group, and a feature_set field that contains the distinct features for
the group.



Logic Operation Stage

After the grouping operation, the logic operations of the expression are
applied to the elements of the feature set. If a particular patient
satisfies the hasFever condition, then at least one document in that
patient’s group will have an NLPQL feature field with the value of
hasFever. Since all the distinct values of the NLPQL features for the
group are stored in the feature set, the feature set must also have an element
equal to hasFever.

A check for set membership using aggregation syntax is expressed as:

{"$in": ["hasFever", "$feature_set"]}





This construct means to use the
$in [https://docs.mongodb.com/manual/reference/operator/aggregation/in/]
operator to test whether feature_set contains the element hasFever.
The $in operator returns a Boolean result.

A successful test for feature set membership means that the patient has
the stated feature.

The evaluator implements the expression logic by translating it into a series
of set membership tests. For our example above, the logic operation pipeline
stage becomes:

{
    '$match': {
        '$expr': {
            '$and': [
                {'$in': ['hasFever', '$feature_set']},
                {
                    '$or': [
                        {'$in': ['hasDyspnea', '$feature_set']},
                        {'$in': ['hasTachycardia', '$feature_set']}
                    ]
                }
            ]
        }
    }
}





Once again we have a match operation to filter the documents. Only those
documents satisfying the expression logic will survive the filter. The
$expr [https://docs.mongodb.com/manual/reference/operator/query/expr/index.html]
operator allows the use of aggregation syntax in contexts where the standard
MongoDB query syntax would be required.

Following that we see a series of logic operations for our expression
hasFever AND (hasDyspnea OR hasTachycardia).  The inner $or operation
tests the feature set for membership of hasDyspnea and hasTachycardia.
If either or both are present, the $or operator returns True. The result of
the $or is then used in an $and operation which tests the feature set
for the presence of hasFever. If it is also present, the $and operator
returns True as well, and the document in question survives the filter operation.

To summarize the evaluation process so far: ClarityNLP converts infix logic
expressions to postfix form and groups the documents by value of the context
variable. It uses a stack-based postfix evaluation mechanism to generate the
aggregation statements for the expression logic. Each logic operation is
converted to a test for the presence of an NLPQL feature in the feature set.



Final Aggregation Pipeline

With these operations the pipeline is complete. The full pipeline for our
example is:

// aggregation pipeline for hasFever AND (hasDyspnea OR hasTachycardia)

// filter documents on job_id and check validity of the nlpql_feature field
{
    "$match": {
        "job_id":12345
        "nlpql_feature": {"$exists":True, "$ne":None}
    }
},

// filter docs on the desired NLPQL feature values
{
    "$match": {
        "nlpql_feature": {"$in": ['hasFever', 'hasDyspnea', 'hasTachycardia']}
    }
},

// group docs by value of context variable and create feature set
{
    "$group": {
        "_id": "${0}".format(context_field),
        "ntuple": {
            "$push": {
                "_id": "$_id",
                "nlpql_feature": "$nlpql_feature",
                "subject": "$subject",
                "report_id": "$report_id"
            }
        },
        "feature_set": {"$addToSet": "$nlpql_feature"}
    }
},

// perform expression logic on the feature set
{
    '$match': {
        '$expr': {
            '$and': [
                {'$in': ['hasFever', '$feature_set']},
                {
                    '$or': [
                        {'$in': ['hasDyspnea', '$feature_set']},
                        {'$in': ['hasTachycardia', '$feature_set']}
                    ]
                }
            ]
        }
    }
}







Result Generation

After constructing a math or logic aggregation pipeline, the evaluator runs the
pipeline and receives the results from MongoDB. The result set is either a list
of document ObjectID values (_id) for a math expression or an ObjectId list
with group info for logic expressions.  For math expressions, the documents
whose _id values appear in the list are queried and written out as the
result set. These documents have their nlpql_feature field set to that
of the define statement that contained the expression.

For logic expressions the process is more complex. To help explain what the
evaluator does we present here a representation of the grouped documents after
running the pipeline above, for the expression
hasFever AND (hasDyspnea OR hasTachycardia):









	ObjectId (_id)

	nlpql_feature

	subject

	report_id



	5c2e9e3431ab5b05db3430e1

	hasDyspnea

	19054

	798209



	5c2e9e3431ab5b05db3430e2

	hasDyspnea

	19054

	798209



	5c2e9e3431ab5b05db3430e3

	hasDyspnea

	19054

	798209



	5c2e9e3431ab5b05db3430e4

	hasDyspnea

	19054

	798209



	5c2e9ec931ab5b05db343efa

	hasDyspnea

	19054

	1303796



	5c2ea2bd31ab5b05db34868c

	hasTachycardia

	19054

	1699977



	5c2ea2bd31ab5b05db34868d

	hasTachycardia

	19054

	1699977



	5c2ea35a31ab5b05db348f19

	hasTachycardia

	19054

	1802359



	5c2ea3a531ab5b05db3492f6

	hasTachycardia

	19054

	1905337



	5c2ea42431ab5b05db34998c

	hasTachycardia

	19054

	1802375



	5c2ea42431ab5b05db34998d

	hasTachycardia

	19054

	1802375



	5c2eb55831ab5b05db35097b

	hasFever

	19054

	[‘1264178’]



	5c2eb55831ab5b05db350d45

	hasFever

	19054

	[‘1699944’]



	5c2eb55831ab5b05db350d46

	hasFever

	19054

	[‘1699944’]






Here we see a representation of the document group for patient 19054. This
group of documents can be considered to be the “evidence” for this patient.
In the ObjectID column are the MongoDB ObjectID values for each task result
document or mathematical result document. The nlpql_feature column
shows which NLPQL feature ClarityNLP found for that document. The subject
column shows that all documents in the group belong to patient 19054, and the
report_id column shows the document identifier.

We see that patient 19054 has five instances of hasDyspnea, six instances
of hasTachycardia, and three instances of hasFever. You can consider
this group as being composed of three subgroups with five, six, and three
elements each.

ClarityNLP presents result documents in a “flattened” format. For each NLPQL
label introduced in a “define” statement, ClarityNLP generates a set of result
documents containing that label in the nlpql_feature field. Each result
document also contains a record of the source documents that were used as
evidence for that label.



Flattening of the Result Group

To flatten these results and generate a set of output documents labeled by the
hasSymptoms NLPQL feature (from the original “define” statement),
ClarityNLP essentially has two options:


	generate all possible ways to derive hasSymptoms from this data


	generate the minimum number of ways to derive hasSymptoms from this
data (while not ignoring any data)




The maximal result set can be generated by the following reasoning. First,
in how many ways can patient 19054 satisfy the condition
hasDyspnea OR hasTachycardia? From the data in the table, there are five
ways to satisfy the hasDyspnea condition and six ways to satisfy the
hasTachycardia condition, for a total of 5 + 6 = 11 ways. Then, for
each of these ways, there are three ways for the patient to satisfy the
condition hasFever. Thus there are a total of 3 * (5 + 6) = 3 * 11 = 33
ways for this patient to satisfy the condition
hasFever AND (hasDyspnea OR hasTachycardia), which would result in the
generation of 33 output documents under a maximal representation.

The minimal result set can be generated by the following reasoning.
We have seen that there are 11 ways for this patient to satisfy the condition
hasDyspnea OR hasTachycardia.  Each of these must be paired with a
hasFever, from the logical AND operator in the expression. By repeating
each of the hasFever entries, we can “tile” the output and pair a
hasFever with one of the 11 others. This procedure generates a result set
containing only 11 entries instead of 33. It uses all of the output data, and
it minimizes data redundancy.

In general, the cardinalities of the sets of NLPQL features connected by
logical OR are added together to compute the number of possible results.
For features connected by logical AND, the cardinalities are multiplied
to get the total number of possiblilities under a maximal representation (this
is the Cartesian product). Under a minimal representation, the cardinality of
the result is equal to the maximum cardinality of the constitutent subsets.

So which output representation does ClarityNLP use?

ClarityNLP uses the minimal representation of the output data.

Here is what the result set looks like using a minimal representation. Each
of the 11 elements contains a pair of documents, one with the feature
hasFever and the other having either hasDyspnea or hasTachycardia,
as required by the expression. We show only the last four hex digits of the
ObjectID for clarity:

// expression: hasFever AND (hasDyspnea OR hasTachycardia)

('097b', 'hasFever'), ('30e1', 'hasDyspnea')
('0d45', 'hasFever'), ('30e2', 'hasDyspnea')
('0d46', 'hasFever'), ('30e3', 'hasDyspnea')
('097b', 'hasFever'), ('30e4', 'hasDyspnea')
('0d45', 'hasFever'), ('3efa', 'hasDyspnea')
('0d46', 'hasFever'), ('868c', 'hasTachycardia')
('097b', 'hasFever'), ('868d', 'hasTachycardia')
('0d45', 'hasFever'), ('8f19', 'hasTachycardia')
('0d46', 'hasFever'), ('92f6', 'hasTachycardia')
('097b', 'hasFever'), ('998c', 'hasTachycardia')
('0d45', 'hasFever'), ('998d', 'hasTachycardia')





Note that the three hasFever entries repeat three times, followed by
another repeat of the first two entries to make a total of 11. Each of these
is paired with one of the five hasDyspnea entries or one of the
six hasTachycardia entries.  No data for this patient has been lost,
and the result is 11 documents in a flattened format satisfying the
logic of the original expression.




Testing the Expression Evaluator

There is a comprehensive test program for the expression evaluator in the file
nlp/data/access/expr_tester.py.  The test program requires a running
instance of MongoDB. We strongly recommend running Mongo on the same machine
as the test program to minimize data transfer delays.

The test program loads a data file into MongoDB and evaluates a suite of
expressions using the data. The expression logic is separately evaluated with
Python set operations. The results from the two evaluations are compared and
the tests pass only if both evaluations produce identical sets of patients.

The test program can be run from the command line. For usage info, run with
the --help option:

python3 ./expr_tester.py --help





The test program assumes that the user has permission create a database without
authentication.

To run the test suite with the default options, first launch MongoDB on your
local system. Information about how to do that can be found in our
native setup guide.

After MongoDB initializes, run the test program with this command, assuming the
default Mongo port of 27017:

python3 ./expr_tester.py





If your MongoDB instance is hosted elsewhere or uses a non-default port
number, provide the connection parameters explicitly:

python3 ./expr_tester.py --mongohost <ip_address> --mongoport <port_number>





The test program takes several minutes to run. Upon completion it should
report that all tests passed.





          

      

      

    

  

    
      
          
            
  
Custom Task Algorithms

Building custom task algorithms in ClarityNLP is a way to create custom algorithms and include external libraries that are callable from NLPQL. To begin creating custom task algorithms, you need a few things to get started.


Create a Python Class

In nlp/custom_tasks, create a new Python class that extends BaseTask. BaseTask is a class that sets up the data, context and connections needed to read and write data in ClarityNLP.
See the source code for BaseTask at nlp/tasks/task_utilities.py. You can start with the sample below and copy and paste the basic structure that you need for a custom task.

from tasks.task_utilities import BaseTask
from pymongo import MongoClient

class SampleTask(BaseTask):
    task_name = "MyCustomTask"

    def run_custom_task(self, temp_file, mongo_client: MongoClient):
        for doc in self.docs:

            # you can get sentences and text through these utility methods
            text = self.get_document_text(doc)
            sentences = self.get_document_sentences(doc)

            # put your custom algorithm here, save your output to a dictionary, and write results below
            obj = {
                'foo': 'bar',
                'sentence_one': sentences[0]
            }

            # writing results
            self.write_result_data(temp_file, mongo_client, doc, obj)

            # writing to log (optional)
            self.write_log_data("DONE", "done writing sample data")







Task Name

task_name is important to include in your SampleTask if you want a user-friendly name to be called from NLPQL.
In this example, the task name is MyCustomTask, but if a custom task wasn’t specified, the task name would be SampleTask.
Also, it’s important to be aware with naming that you can overwrite other custom tasks and even core ClarityNLP tasks (which may be the desired outcome). So in most cases, you’ll want to provide a unique name.



Running a Custom Task

The ClarityNLP engine will automatically create a distributed job and assign a set of documents to each worker task. Knowing that, there are just a few things to do to create custom tasks. You’ll need to implement the run_custom_task function in your task.
That will give you access to the self parameter which has attributes from the job and the set of documents your algorithm will run on. You don’t need to worry about them too much, but know they are accessible in your custom task.

You also have access to a temp_file which is provided by Luigi. It’s not necessarily used by ClarityNLP, but you may wish to use it for some logging purpose (logging will be discussed more below). In addition, you have a mongo_client connection that is opened and closed for you, however you’ll need access to this object when you’re writing output for your ClarityNLP NLPQL.



Iterating over Documents

Since you are responsible for a set of documents, you need to get the list of documents which has been assigned to this worker. This is callable by using self.docs and should be iterable in Python.

Per document (or doc), there are few helper functions available for you.


	self.get_document_text(doc) - gets the text of document as a string


	self.get_document_sentences(doc) - gets a list of the sentences in a document, parsed with the default ClarityNLP sentence segmentor






Accessing Custom Variables

If you have custom parameters in your NLPQL, you can access them via the custom_arguments dictionary in your pipeline config.

my_value = self.pipeline_config.custom_arguments['my_value']







Saving Results

All data that ClarityNLP uses in NLPQL needs to eventually end up in MongoDB. BaseTask provides two types of hooks, depending on whether you have a single object or a list of objects. Both return the new unique id (or ids) from MongoDB.


	self.write_result_data(temp_file, mongo_client, doc, obj) - saves results where obj is a Python dict


	self.write_multiple_result_data(temp_file, mongo_client, doc, obj_list) - saves results where obj_list is a Python list or set (implies multiple results per document)






Logging and Debugging

ClarityNLP provides two means for logging and debugging your custom tasks. Most commonly you will use the first method, where you pass in a status and description text.
This is written to the Postgres database, and accessible when users call the status function on their NLPQL jobs.

self.write_log_data("DONE!", "done writing sample data")





The second is less common, but may be desirable in certain cases, which is writing to the temp_file used by Luigi, e.g.:

temp_file.write("Some pretty long message that maybe I don't want to show to users")





This is written to the file system and generally not accessible to users via APIs.



Using Custom Collectors

Collectors in ClarityNLP are similar to the reduce step in map-reduce jobs. They can be implemented similar to custom tasks, except their purpose is generally to summarize across all the data generated in the parallelized Luigi tasks.
To utilize the collector, extend the BaseCollector class, and make sure your collector_name in that class is the same as your task_name in your custom task.

class MyCustomCollector(BaseCollector):
    collector_name = 'cool_custom_stuff'

    def custom_cleanup(self, pipeline_id, job, owner, pipeline_type, pipeline_config, client, db):
        print('custom cleanup (optional)')

    def run_custom_task(self, pipeline_id, job, owner, pipeline_type, pipeline_config, client, db):
        print('run custom task collector')
        # TODO write out some summary stats to mongodb


class MyCustomTask(BaseTask):
    task_name = 'cool_custom_stuff'

    def run_custom_task(self, temp_file, mongo_client: MongoClient):
        print('run custom task')

        for doc in self.docs:
            # TODO write out some data to mongodb about these docs





Collectors often are not needed, but may be necessary for certain algorithm implementations.



Setting up the Python Package

ClarityNLP automatically discovers any classes in the custom_task package. However, besides saving your Python file in custom_tasks, you just need to make sure it’s included in the custom_tasks package by adding it to nlp/custom_tasks/__init__.py, following the example:

from .SampleTask import SampleTask







Calling Custom Algorithms from NLPQL

To run your custom algorithm in NLPQL, you just need to call it by name as a function like the example below, and make sure to pass in any variables needed for the config and Solr query.

define sampleTask:
  Clarity.MyCustomTask({
    documentset: [ProviderNotes],
    "my_custom_argument": 42
  });







Custom Algorithm or External Library?

There aren’t too many limitations on what you build inside of custom tasks and collectors, given that it’s a something that can input text, and output a Python object. This is a powerful feature that will allow you to integrate many types of capabilities into ClarityNLP!



Other Conventions

While the previous sections contain the main items you need to create custom task algorithms in ClarityNLP, here’s some other information that might be useful.


	Default Value: Or using value as the default field. In NLPQL, when no field name is specified, it will default to value. This means that you may want to provide a value field in your resulting object that gets saved to MongoDB, so that there’s a default value


	Sentences: While there’s no requirement to parse or run your algorithm at the sentence level, it is useful for scoping and user validation. Therefore, in most of the core ClarityNLP algorithms, output sentence is part of the result, and you may wish to follow this paradigm


	Metadata: All the metadata from the job is automatically saved for you, however you may have additional metadata you want to save from your algorithm or source data








          

      

      

    

  

    
      
          
            
  
Testing NLP Algorithms

This application uses pytest.


Running Pytest from the nlp directory

From the command line:

python3 -m pytest tests/









          

      

      

    

  

    
      
          
            
  
Third Party App Integration

The information below will help you configure a third-party application for ClarityNLP.

By “third-party”, we are referring to applications not developed by the core ClarityNLP team. The third-party app would like access to your ClarityNLP’s resources.

The third-party application must be a registered OAuth2 Client with ClarityNLP’s Identity Provider in order to complete an OAuth2 Flow and be issued an access token.

If you need a refresher on OAuth2 in order to determine the ideal Grant Type for the third-party application, here is a review [https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2].

Once you have determined the appropriate Grand Type, refer to /identity-provider/Config.cs to see examples of how to configure your client.

An exhaustive list of Client properties can be found here [http://docs.identityserver.io/en/latest/reference/client.html].




          

      

      

    

  

    
      
          
            
  
FHIR Integration




          

      

      

    

  

    
      
          
            
  
NLPQL Reference


NLPQL Helpers



	documentset

	cohort

	termset

	context

	Termset Expansion Macros







NLPQL Tasks

All tasks (or data entities) are prefixed in NLPQL as define, with the optional final flag. The final flag writes each result as part of the finalized result set in MongoDB.


Core Tasks



	Clarity.MeasurementFinder

	Clarity.NamedEntityRecognition

	Clarity.ngram

	Clarity.POSTagger

	Clarity.ProviderAssertion

	Clarity.TermProximityTask

	Clarity.TermFinder

	Clarity.ValueExtraction







Custom Tasks



	Clarity.CQLExecutionTask

	Clarity.EcogCriteriaTask

	Clarity.GleasonScoreTask

	Clarity.O2SaturationTask

	Clarity.PFTFinder

	Clarity.PregnancyTask

	Clarity.RaceFinderTask

	Clarity.TextStats

	Clarity.TNMStager

	Clarity.TransfusionNursingNotesParser







Base Classes

Also see the following classes, which are the base classes for the NLPQL tasks:



	BaseTask

	BaseCollector








NLPQL Operations

All operations are prefixed in NLPQL as define, with the optional final flag. The final flag writes each result as part of the finalized result set in MongoDB.



	Data Operations









          

      

      

    

  

    
      
          
            
  
documentset

ClarityNLP modules in NLPQL that defines how documents are to be queried in Solr.


Functions


Clarity.createReportTagList

Uses the ClarityNLP document ontology. Mapped using the Report Type Mapper.

documentset RadiologyNotes:
    Clarity.createReportTagList(["Radiology"]);









Clarity.createDocumentSet

Uses arguments to build a custom Solr query to retrieve document set. All arguments are optional, but at least one must be present.








	Name

	Type

	Notes





	report_types

	List[str]

	List of report types. Corresponds to report_types in Solr.



	report_tags

	List[str]

	List of report tags. Report tags mapped to document ontology.



	source

	str OR List[str]

	List of sources to map to. Use array of strings or string, separated by commas.



	filter_query

	str

	Use single quote (’) to quote. Corresponds to Solr fq parameter. See here [https://lucene.apache.org/solr/guide/7_4/common-query-parameters.html#fq-filter-query-parameter].*



	query

	str

	Use single quote (’) to quote. Corresponds to Solr q parameter. See here [https://lucene.apache.org/solr/guide/7_4/the-standard-query-parser.html#the-standard-query-parser].*






* See more about the ClarityNLP Solr fields here.

documentset AmoxDischargeNotes:
 Clarity.createDocumentSet({
     "report_types":["Discharge summary"],
     "report_tags": [],
     "filter_query": "",
     "source": ["MIMIC","FDA Drug Labels"],
     "query":"report_text:amoxicillin"});









Clarity.createReportTypeList

Uses an explicit report type list of string to match from the report_type field.

documentset ChestXRDocs:
    Clarity.createReportTypeList(["CHEST XR", "CHEST X-RAY"]);












          

      

      

    

  

    
      
          
            
  
cohort

Limits Solr query patients by ones matching the cohort.


Functions


OHDSI.getCohort(cohortId)

Returns a list of patients matching the OHDSI cohort id. Will limit patients in the Solr query.

cohort SocialSupportPatients:OHDSI.getCohort(100);





cohort can then be passed as an argument in tasks. For example:

define Widowed:
    Clarity.ProviderAssertion({
        cohort:SocialSupportPatients,
        termset:[WidowedTerms]
    });









Clarity.getJobResults

Returns a list of patients or documents, matching the job_id and parameters. Will limit patients or documents in the Solr query.

Example:

cohort OpiodPatients:
    Clarity.getJobResults({
        "context":"patient",
        "job_id": 406,
        "nlpql_feature":"tookOpioids"
    });





Arguments:









	Name

	Type

	Required

	Notes





	context

	str

	Yes

	“patient” or “document”



	job_id

	int

	No

	The job_id. Not strictly required, but desirable to select the correct phenotype.



	nlpql_feature

	str

	No

	The feature name used in the NLPQL define



	report_type

	str

	No

	


	pipeline_type

	str

	No

	The NLPQL pipeline feature type (e.g. “ValueExtractor”)



	pipeline_id

	int

	No

	


	subject

	str

	No

	


	phenotype_final

	bool

	No

	Whether the results were tagged as final or not



	<any_generated_feature>

	<type>

	No

	Any feature you wish to filter or that was generated by ClarityNLP.











          

      

      

    

  

    
      
          
            
  
termset

ClarityNLP modules in NLPQL that define sets of terms.


Example:

termset EjectionFractionTerms: [
    "ejection fraction",
    "LVEF",
    "EF",
];





termset can now be passed as an argument to tasks. For example:

define EjectionFractionFunction:
    Clarity.ValueExtraction({
        termset:[EjectionFractionTerms],
        documentset: [ProviderNotes],
        });





Note that termset is required in certain tasks such as Clarity.ProviderAssertion and Clarity.TermFinder.


Lexical Variants

As an optional step, NLPQL can be pre-processed with lexical variants.
Learn more about how to use lexical variants here.






          

      

      

    

  

    
      
          
            
  
context

Optional field. Required if doing logical operations. Should logical joins occur internally within a document (Document), or
across all documents for a patient/subject (Patient). The default value is Patient.

context Patient;








          

      

      

    

  

    
      
          
            
  
Termset Expansion Macros

NLPQL supports a set of macros for termset generation. The macros
provide a compact syntax for representing lists of synonyms and lexical
variants (plurals and verb inflections). The macros also support the concept
of a “namespace”, so that terms can be generated from different sources.

The use of termset expansion macros is optional. They are provided purely
for convenience, as a means to generate and suggest additional synonyms.


Syntax

The macro syntax is namespace.function(args), where the namespace is either
Clarity or OHDSI.  The argument is either a single term in double
quotes or a comma-separated list of terms surrounded by brackets:

namespace.function("term")
namespace.function(["term1", "term2", ..., "termN"])





If the namespace is omitted it defaults to Clarity.  The supported macros
are:







	Macro    Meaning

	




	Clarity.Synonyms

	Generate a list of synonyms from WordNet



	Clarity.Plurals

	Generate a list of plural forms



	Clarity.VerbInflections

	Generate inflections for the verb in base form



	OHDSI.Synonyms

	Generate a list of OHDSI synonyms for the concept



	OHDSI.Ancestors

	Generate all OHDSI ancestor concepts



	OHDSI.Descendants

	Generate all OHDSI descendant concepts






The synonym finder examines the macro argument(s) and attempts to find the
nouns, adjectives, and adverbs. It generates synonyms for each that it finds,
returning the cartesian product 1 of all possibilities. This process can
cause a combinatorial explosion in the number of results. To illustrate,
consider this example:

The human walks the pet.





If the synonyms for human are man, woman, boy, girl and the synonyms for
pet are dog, cat, then 4*2 = 8 results will be generated, in addition
to the original:

The human walks the pet.
The man walks the dog.
The woman walks the dog.
The boy walks the dog.
The girl walks the dog.
The man walks the cat.
The woman walks the cat.
The boy walks the cat.
The girl walks the cat.





Hundreds or perhaps thousands of result strings could be generated by expansion
of terms with many synonyms. So we recommend caution with synonym generation,
limiting its use to single terms or short strings.

Both single and multiword terms can be included in a macro, and the macro can
operate only on selected terms in a list:

Synonyms(["heart", "heart attack", "heart disease"])
"heart", Synonyms("heart attack"), "heart disease",





IMPORTANT NOTE: the VerbInflections macro requires that the verb be
given in base form (also called “raw infinitive” form, “dictionary” form, or
“bare” form).  The reason for this is because it is not possible to
unambiguously determine the base form of a verb from an arbitrary inflection,
and the ClarityNLP verb inflector requires the base form as input.  See the
documentation for the verb inflector for more on this
topic.



Macro Nesting

Macros can also be nested:

Clarity.LexicalVariants(OHDSI.Synonyms(["myocardial infarction"]))
Plurals(Synonyms("neoplasm"))





The nesting depth is limited to two, as these examples illustrate.



API

The API endpoint nlpql_expander allows users to view the results of macro
expansion. For instance, to expand macros in the NLPQL file macros.nlpql,
HTTP POST the file to the nlpql_expander API endpoint with this cURL 2
command:

curl -i -X POST http://localhost:5000/nlpql_expander -H "Content-Type: text/plain" --data-binary "@macros.nlpql"





Another HTTP client, such as Postman 3, could also be used to POST the file.



Examples

Here is an example that illustrates the use of the NLPQL macros.

Consider this termset for symptoms related to influenza:

termset FluTermset: [
"coughing",
OHDSI.Synonyms("fever"),
Synonyms("body ache"),
VerbInflections("have fever"),
];





After macro expansion, the termset becomes:

termset FluTermset: [
"coughing",
"febrile", "fever", "fever (finding)", "pyrexia", "pyrexial",
"body ache", "body aching", ... "torso aching", "trunk ache", "trunk aching",
"had fever", "has fever", "have fever", "having fever",
];





Some synonyms for “body ache” have been omitted. The result will obviously
require editing and removal of irrelevant synonyms. One could use the macros
as part of an iterative development process for termsets, using the macros to
generate initial lists of terms which would then be pruned and refined.



References


	1

	https://en.wikipedia.org/wiki/Cartesian_product



	2

	https://curl.haxx.se/



	3

	https://www.getpostman.com/









          

      

      

    

  

    
      
          
            
  
Clarity.MeasurementFinder


Description

Task for extracting size measurements from text, based on the given termset.
Read more about MeasurementFinder here.



Example

define ProstateVolumeMeasurement:
    Clarity.MeasurementFinder({
        documentset: [RadiologyReports],
        termset: [ProstateTerms]
    });







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	Yes

	


	documentset

	documentset

	No

	


	cohort

	cohort

	No

	


	sections

	List[str]

	No

	Limit terms to specific sections








Results








	Name

	Type

	Notes





	sentence

	str

	Sentence where measurement is found



	text

	str

	text of the complete measurement



	start

	int

	offset of the first character in the matching text



	end

	int

	offset of the final character in the matching text plus 1



	value

	str

	numeric value of first number (same as dimension_X)



	term

	str

	term from termset that matched a measurement



	meas_object

	List[str]

	the object being measured; if ClarityNLP cannot decide, a list of possible objects



	dimension_X

	int

	numeric value of first number



	dimension_Y

	int

	numeric value of second number



	dimension_Z

	int

	numeric value of third number



	units

	str

	either mm, mm2, or mm3



	location

	List[str]

	location of measurement, if detected



	condition

	str

	either ‘RANGE’ for numeric ranges, or ‘EQUAL’ for all others



	temporality

	str

	CURRENT or PREVIOUS, indicating when the measurement occurred



	min_value

	int

	either min([x, y, z]) or min(values)



	max_value

	int

	either max([x, y, z]) or max(values)








Collector

No





          

      

      

    

  

    
      
          
            
  
Clarity.NamedEntityRecognition


Description

Simple task that runs spaCy [https://spacy.io/usage/linguistic-features#section-named-entities]’s NER model.



Example

Clarity.NamedEntityRecognition({
  documentset: [FDANotes]
});







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	No

	


	documentset

	documentset

	No

	


	cohort

	cohort

	No

	


	sections

	List[str]

	No

	Limit terms to specific sections








Results








	Name

	Type

	Notes





	term

	str

	The original entity text.



	text

	str

	Same as term



	start

	int

	Index of start of entity



	end

	int

	Index of end of entity



	label

	str

	Label of the entity, e.g. PERSON, MONEY, DATE. See here for more [https://spacy.io/api/annotation#named-entities]



	description

	str

	Description of the entity








Collector

No





          

      

      

    

  

    
      
          
            
  
Clarity.ngram


Description

Task that aggregates n-grams across the selected document set. Uses textacy [https://github.com/chartbeat-labs/textacy]. There’s no need to specify final on this task. Any n-gram that occurs at at least the minimum frequency will show up in the final result.



Example

define demographicsNgram:
  Clarity.ngram({
    termset:[DemographicTerms],
    "n": "3",
    "filter_nums": false,
    "filter_stops": false,
    "filter_punct": true,
    "min_freq": 2,
    "lemmas": true,
    "limit_to_termset": true
    });







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	No

	


	documentset

	documentset

	No

	


	cohort

	cohort

	No

	


	n

	int

	No

	Default = 2



	filter_nums

	bool

	No

	Default = false; Exclude numbers from n-grams



	filter_stops

	bool

	No

	Default = true; Exclude stop words



	filter_punct

	bool

	No

	Default = true; Exclude punctuation



	lemmas

	bool

	No

	Default = true; Converts work tokens to lemmas



	limit_to_termset

	bool

	No

	Default = false; Only include n-grams that contain at least one term from termset



	min_freq

	bool

	No

	Default = 1; Minimum frequency for n-gram to return in final result








Results








	Name

	Type

	Notes





	text

	str

	The n-gram detected



	count

	int

	The number of occurrences of the n-gram








Collector

BaseCollector





          

      

      

    

  

    
      
          
            
  
Clarity.POSTagger


Description

Simple task that runs spaCy [https://spacy.io/api/annotation#section-pos-tagging]’s Part of Speech Tagger. Should not be ran on large data sets, as will result in a lot of data generation.



Example

Clarity.POSTagger({
  documentset: [FDANotes]
});







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	No

	


	documentset

	documentset

	No

	


	cohort

	cohort

	No

	







Results








	Name

	Type

	Notes





	sentence

	str

	


	term

	str

	Token being evaluated



	text

	str

	Same as term



	lemma

	str

	Lemma of term



	pos

	str

	POS tag. See list here [http://universaldependencies.org/u/pos/].



	tag

	str

	extended part-of-speech tag



	dep

	str

	dependency label



	shape

	str

	Token shape



	is_alpha

	bool

	Is token all alphabetic



	is_stop

	bool

	Is token a stop word



	description

	str

	Tag description








Collector

No





          

      

      

    

  

    
      
          
            
  
Clarity.ProviderAssertion


Description

Simple task for identifying positive terms that are not hypothethical and related to the subject.
Read more here.



Example

Clarity.ProviderAssertion({
  cohort:RBCTransfusionPatients,
  termset: [PRBCTerms],
  documentset: [ProviderNotes]
});







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	Yes

	


	excluded_termset

	termset

	No

	Matches that should be excluded if these terms are found



	documentset

	documentset

	No

	


	cohort

	cohort

	No

	


	sections

	List[str]

	No

	Limit terms to specific sections



	include_synonyms

	bool

	No

	


	include_descendants

	bool

	No

	


	include_ancestors

	bool

	No

	


	vocabulary

	str

	No

	Default: ‘MIMIC’








Results








	Name

	Type

	Notes





	sentence

	str

	Sentence where the term was found.



	section

	str

	Section where the term was found.



	term

	str

	Term identified



	start

	str

	Start position of term in sentence.



	end

	str

	End position of term in sentence.



	negation

	str

	Negation identified by ConText.



	temporality

	str

	Temporality identified by ConText.



	experiencer

	str

	Experiencer identified by ConText.








Collector

No





          

      

      

    

  

    
      
          
            
  
Clarity.TermProximityTask


Description

This is a custom task for performing a term proximity search. It takes two lists of search terms and a maximum word distance. If terms from lists 1 and 2 both appear in the sentence and are within the specified distance, the search succeeds and both terms appear in the results. A boolean parameter can also be provided that either enforces or ignores the order of the terms.



Example

define final TermProximityFunction:
    Clarity.TermProximityTask({
        documentset: [Docs],
        "termset1": [ProstateTerms],
        "termset2": "cancer, Gleason, Gleason's, Gleasons",
        "word_distance": 5,
        "any_order": "False"
    });







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	documentset

	documentset

	No

	


	cohort

	cohort

	No

	


	termset1

	termset or str

	Yes

	termset or comma-separated list of terms to search for



	termset2

	termset or str

	Yes

	termset or comma-separated list of terms to search for



	word_distance

	int

	Yes

	max distance between search terms



	any_order

	bool

	No

	Default = false; Should terms in set1 come before terms in set1?








Results








	Name

	Type

	Notes





	sentence

	str

	


	start

	int

	Start of entire matched phrase



	end

	int

	End of entire matched phrase



	value

	str

	Comma separated list of matched terms



	word1

	str

	First term matched



	word2

	str

	Second term matched



	start1

	int

	Start of first term



	start2

	int

	End of second term



	end1

	int

	Start of first term



	end2

	int

	End of second term








Collector

No





          

      

      

    

  

    
      
          
            
  
Clarity.TermFinder


Description

Simple task for identifying terms with their sections, negation, temporality and experiencer.
Read more here.



Example

Clarity.TermFinder({
  cohort:RBCTransfusionPatients,
  termset: [PRBCTerms],
  documentset: [ProviderNotes]
});







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	Yes

	


	excluded_termset

	termset

	No

	Matches that should be excluded if these terms are found



	documentset

	documentset

	No

	


	cohort

	cohort

	No

	


	sections

	List[str]

	No

	Limit terms to specific sections



	include_synonyms

	bool

	No

	


	include_descendants

	bool

	No

	


	include_ancestors

	bool

	No

	


	vocabulary

	str

	No

	Default: ‘MIMIC’








Results








	Name

	Type

	Notes





	sentence

	str

	Sentence where the term was found.



	section

	str

	Section where the term was found.



	term

	str

	Term identified



	start

	str

	Start position of term in sentence.



	end

	str

	End position of term in sentence.



	negation

	str

	Negation identified by ConText.



	temporality

	str

	Temporality identified by ConText.



	experiencer

	str

	Experiencer identified by ConText.








Collector

No





          

      

      

    

  

    
      
          
            
  
Clarity.ValueExtraction


Description

Extract values from text, related to terms.
Read more here.



Examples

define NYHAClass:
  Clarity.ValueExtraction({
    termset: [NYHATerms],
    enum_list: ["ii","iii","iv"];
    });





define Temperature:
  Clarity.ValueExtraction({
    cohort:PlateletTransfusionPatients,
    termset: [TempTerms],
    minimum_value: "96",
    maximum_value: "106"
    });







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	Yes

	List of possible terms to find, e.g. ‘NYHA’



	documentset

	documentset

	No

	


	cohort

	cohort

	No

	


	enum_list

	List[str]

	No

	List of possible strings associated with the query terms



	minimum_value

	int

	No

	Minimum allowable value; any extracted values less than this are ignored



	maximum_value

	int

	No

	Maximum allowable value; any extracted values greater than this are ignored



	case_sensitive

	bool

	No

	Default = false; whether to do a case-sensitive term match








Custom String Arguments

For these arguments, surround the string on each side of the ‘:’ character with quotes.

For example:

define systolic_blood_pressure:
    Clarity.ValueExtraction({
        termset: [blood_pressure_terms],
        documentset: [my_docs]
    });

define diastolic_blood_pressure:
    Clarity.ValueExtraction({
        termset: [blood_pressure_terms],
        documentset: [my_docs],
        "denom_only":"True"
 });













	Name

	Type

	Required

	Notes





	denom_only

	str

	No

	Default = “False”; if “True”, return denominators of fractions instead of
numerators



	values_before_terms

	str

	No

	(for enumlist only) Default = “False”; if “True”, look for enum_list strings
preceding the query terms. Otherwise look for enumlist strings following the
query terms.








Results








	Name

	Type

	Notes





	sentence

	str

	sentence where term and value are found



	text

	str

	substring of sentence containing term and value



	start

	int

	offset of the first character in the matching text



	end

	int

	offset of the final character in the matching text plus 1



	term

	str

	term from termset that was found to have an associated value



	condition

	str

	relation of query term to value:
‘APPROX’, ‘LESS_THAN’, ‘LESS_THAN_OR_EQUAL’,
‘GREATER_THAN’, ‘GREATER_THAN_OR_EQUAL’,
‘EQUAL’, ‘RANGE’, FRACTION_RANGE’



	value

	str

	the numeric value that was extracted



	value1

	str

	either identical to value or the first number of a range



	value2

	str

	either the empty string or the second number of a range



	min_value

	int

	either identical to value or min(value1, value2) if both exist



	max_value

	int

	either identical to value or max(value1, value2) if both exist








Collector

No





          

      

      

    

  

    
      
          
            
  
Clarity.CQLExecutionTask


Description

This is a custom task that allows ClarityNLP to execute
CQL [https://cql.hl7.org/] (Clinical Quality Language) queries embedded in
NLPQL files. ClarityNLP directs CQL code to a running instance of the
CQL Engine [https://github.com/gt-health/cql_execution_service], which
processes the CQL and translates it into requests for a FHIR
(Fast Healthcare Interoperability Resources) [https://www.hl7.org/fhir/overview.html]
server. The FHIR server runs the query and retrieves structured data for
a single patient. The data returned from the CQL query appears in the
results for the job associated with the NLPQL file.

The CQL query requires several FHIR-related parameters, such as the patient
ID, the URL of the FHIR server, and several others to be described below.
These parameters can either be specified in the NLPQL file itself or supplied
by ClarityNLP as a Service [https://github.com/ClarityNLP/ClarityNLPaaS].


Documentsets for Unstructured and Structured Data

ClarityNLP was originally designed to process unstructured text documents.
In a typical workflow the user specifies a documentset in an NLPQL
file, along with the tasks and NLPQL expressions needed to process the
documents. ClarityNLP issues a Solr query to retrieve the matching documents,
which it divides into batches. ClarityNLP launches a separate task per batch
to process the documents in parallel. The number of tasks spawned by the Luigi
scheduler depends on the number of unstructured documents returned by the
Solr query. In general, the results obtained include data from multiple
patients.

ClarityNLP can also support single-patient structured CQL queries with a few
simple modifications to the documentset. For CQL queries the documentset must
be specified in the NLPQL file so that it limits the unstructured documents to
those for a single patient only. FHIR is essentially a single-patient
readonly data retrieval standard. Each patient with data stored on a FHIR
server has a unique patient ID. This ID must be used in the documentset
statement and in the Clarity.CQLExecutionTask body itself, as illustrated
below. The documentset specifies the unstructured data for the patient, and
the CQL query specifies the structured data for the patient.




Relevant FHIR Parameters

These parameters are needed to connect to the CQL Engine and the FHIR server,
evaluate the CQL statements, and retrieve the results. They can be provided
directly as parameters in the CQLExecutionTask statement (see below), or
indirectly via ClarityNLPaaS [https://github.com/ClarityNLP/ClarityNLPaaS]:







	Parameter

	Meaning





	fhir_version

	Either DSTU2 or DSTU3



	cql_eval_url

	URL of the FHIR server’s CQL Execution Service



	patient_id

	Unique ID of patient whose data will be accessed



	fhir_data_service_uri

	FHIR server base URL



	cql

	CQL code surrounded by “”” (triple quotes)








Time Filtering

This task supports a time filtering capability for the CQL query results. Two
optional parameters, time_start and time_end, can be used to
specify a time window. Any results whose timestamps lie outside of this
window will be discarded. If the time window parameters are omitted, all
results from the CQL query will be kept.

The time_start and time_end parameters must be quoted strings with
syntax as follows:

DATETIME(YYYY, MM, DD, HH, mm, ss)
DATE(YYYY, MM, DD)
EARLIEST()
LATEST()





An optional offset in days can be added or subtracted to these:

LATEST() - 7d
DATE(2010, 7, 15) + 20d





The offset consists of digits followed by a d character, indicating days.

Both ``time_start`` and ``time_end`` are assumed to be expressed in
Universal Coordinated Time (UTC).

Here are some time window examples:

1. Discard any results not occurring in March, 2016:

"time_start":"DATE(2016, 03, 01)",
  "time_end":"DATE(2016, 03, 31)"





2. Keep all results within one week of the most recent result:

"time_start":"LATEST() - 7d",
  "time_end":"LATEST()"





3. Keep all results within a window of 20 days beginning July 4, 2018, at 3 PM:

"time_start":"DATETIME(2018, 7, 4, 15, 0, 0)",
  "time_end":"DATETIME(2018, 7, 4, 15, 0, 0) + 20d"





Note that the strings to the left and right of the colon must be surrounded
by quotes.



Example

Here is an example of how to use the CQLExecutionTask directly, without
using ClarityNLPaaS. In the text box below there is a documentset creation
statement followed by an invocation of the CQLExecutionTask. The
documentset consists of all indexed documents for patient 99999 with a
source field equal to MYDOCS.  These documents are specified explicitly
in the CQLExecutionTask invocation that follows, to limit the source
documents to those for patient 99999 only.

The task_index parameter is used in an interprocess communication scheme
for controlling task execution. ClarityNLP’s Luigi scheduler creates worker
task clones in proportion to the number of unstructured documents in the
documentset. Only a single task from among the clones should actually connect
to the FHIR server, run the CQL query, and retrieve the structured data.

ClarityNLP uses the task_index parameter to identify the single task
that should execute the CQL query. Any NLPQL file can contain multiple
invocations of Clarity.CQLExecutionTask. Each of these should have
a task_index parameter, and they should be numbered sequentially starting
with 0.  In other words, each define statement containing an invocation
of Clarity.CQLExecutionTask should have a unique value for the zero-based
task_index. If you limit your CQL use to a single query per NLPQL file,
the value of task_index should always be set to 0.

The patient_id parameter identifies the patient whose data will be accessed
by the CQL query. This ID should match that specified in the documentset
creation statement.

The remaining parameters from the table above are set to values appropriate for
GA Tech’s FHIR infrastructure. You should change them to match your FHIR
installation.

The cql parameter is a triple-quoted string containing the CQL query. the
triple quotes can be comprised of either single or double quotes.
This CQL code is assumed to be syntactically correct and is passed to the FHIR
server’s CQL evaluation service unaltered. All CQL code should be checked for
syntax errors and other problems prior to its use in an NLPQL file.

This example omits the optional time window parameters.

documentset PatientDocs:
 Clarity.createDocumentSet({
     "filter_query":"source:MYDOCS AND subject:99999"
 });

 define WBC:
     Clarity.CQLExecutionTask({
         documentset: [PatientDocs],
         "task_index": 0,
         "fhir_version":"DSTU2",
         "patient_id":"99999",
         "cql_eval_url":"https://gt-apps.hdap.gatech.edu/cql/evaluate",
         "fhir_data_service_uri":"https://apps.hdap.gatech.edu/gt-fhir/fhir/",
         cql: """
              library Retrieve2 version '1.0'

              using FHIR version '3.0.0'

              include FHIRHelpers version '3.0.0' called FHIRHelpers

              codesystem "LOINC": 'http://loinc.org'

              define "WBC": Concept {
                  Code '26464-8' from "LOINC",
                  Code '804-5' from "LOINC",
                  Code '6690-2' from "LOINC",
                  Code '49498-9' from "LOINC"
              }

              context Patient

              define "result":
                  [Observation: Code in "WBC"]
              """
     });

     context Patient;







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	documentset

	documentset

	Yes

	Documents for a SINGLE patient only.



	task_index

	int

	Yes

	Each CQLExecutionTask statement must have a unique value of this index.



	fhir_version

	str

	No

	Either “DSTU2” (default) or “STU3”



	patient_id

	str

	Yes

	CQL query executed on FHIR server for this patient.



	cql_eval_url

	str

	Yes

	See table above.



	fhir_data_service_uri

	str

	Yes

	See table above.



	cql

	triple-quoted str

	Yes

	Properly-formatted CQL query, sent verbatim to FHIR server.



	time_start

	str

	No

	Optional, discard results with timestamp < time_start



	time_end

	str

	No

	Optional, discard results with timestamp > time_end








Results

The specific fields returned by the CQL query are dependent on the type of FHIR
resource that contains the data. ClarityNLP can process the FHIR resources in
the next table:






	FHIR Resource Type





	Patient



	Procedure



	Condition



	Observation



	MedicationOrder



	MedicationRequest



	MedicationStatement



	MedicationAdministration






ClarityNLP returns a flattened version of the JSON representation of each
resource, the meaning of which is explained
here [https://github.com/amirziai/flatten]. Essentially, the key for a
flattened JSON object contains underscores for each nested object boundary
(delimited by the { character), and a numeric index for each array
boundary (delimited by the [ character).

To illustrate, consider this JSON object:

{
    "field1":"value1",
    "field2":{"field3":"value3"},
    "field4":[{"field5":"value5", "field6":"value6"}],
    "field7":[{"field8":[{"field9":"value9", "field10":"value10"}]}]
}





The flattened version is:

{
    "field1":"value1",
    "field2_field3":"value3",
    "field4_0_field5":"value5",
    "field4_1_field6":"value6",
    "field7_0_field8_0_field9":"value9",
    "field7_0_field8_1_field10":"value10"
}





The FHIR resource data structures can be represented as nested JSON objects.
The DSTU2 resources can be found here [http://hl7.org/fhir/DSTU2/resourcelist.html]
and the DSTU3 resources can be found here [http://hl7.org/fhir/STU3/resourcelist.html].

For a specific FHIR example, consider the DSTU2
general condition example [http://hl7.org/fhir/DSTU2/condition-example.json.html]:

{
    "resourceType": "Condition",
    "id": "example",
    "text":
    {
        "status": "generated",
        "div": "<div>Severe burn of left ear (Date: 24-May 2012)</div>"
    },
    "patient":
    {
        "reference": "Patient/example"
    },
    "code":
    {
        "coding":
        [
            {
                "system": "http://snomed.info/sct",
                "code": "39065001",
                "display": "Burn of ear"
            }
        ],
        "text": "Burnt Ear"
    },
    "category":
    {
        "coding":
        [
            {
                "system": "http://hl7.org/fhir/condition-category",
                "code": "diagnosis",
                "display": "Diagnosis"
            },
            {
                "fhir_comments":
                [
                    "  and also a SNOMED CT coding  "
                ],
                "system": "http://snomed.info/sct",
                "code": "439401001",
                "display": "Diagnosis"
            }
        ]
    },
    "verificationStatus": "confirmed",
    "severity":
    {
        "coding":
        [
            {
                "system": "http://snomed.info/sct",
                "code": "24484000",
                "display": "Severe"
            }
        ]
    },
    "onsetDateTime": "2012-05-24",
    "bodySite":
    [
        {
            "coding":
            [
                {
                    "system": "http://snomed.info/sct",
                    "code": "49521004",
                    "display": "Left external ear structure"
                }
            ],
            "text": "Left Ear"
        }
    ]
 }





The flattened version of this example, with quotes removed for clarity, is:

resourceType: Condition
id: example
text_status: generated
text_div: <div xmlns="http://www.w3.org/1999/xhtml">Severe burn of left ear (Date: 24-May 2012)</div>
clinicalStatus: active
verificationStatus: confirmed
category_0_coding_0_system: http://hl7.org/fhir/condition-category
category_0_coding_0_code: encounter-diagnosis
category_0_coding_0_display: Encounter Diagnosis
category_0_coding_1_system: http://snomed.info/sct
category_0_coding_1_code: 439401001
category_0_coding_1_display: Diagnosis
severity_coding_0_system: http://snomed.info/sct
severity_coding_0_code: 24484000
severity_coding_0_display: Severe
code_coding_0_system: http://snomed.info/sct
code_coding_0_code: 39065001
code_coding_0_display: Burn of ear
code_text: Burnt Ear
bodySite_0_coding_0_system: http://snomed.info/sct
bodySite_0_coding_0_code: 49521004
bodySite_0_coding_0_display: Left external ear structure
bodySite_0_text: Left Ear
subject_reference: Patient/example
onsetDateTime: 2012-05-24 00:00:00
date_time: 2012-05-24 00:00:00
len_code_coding: 1
len_severity_coding: 1
len_bodySite: 1
len_bodySite_0_coding: 1
len_category: 1
len_category_0_coding: 2
value_name: Burn of ear





Note the additional fields at the end, such as date_time and the fields
prefixed with len_. ClarityNLP adds the date_time field to enable
time sorting on the results (see above). The len_ prefixed fields
provide the lengths of all lists in the flattened data. These are convenience
fields, inserted so that consumers of the data will not have to separately
determine the presence and size of the embedded lists.

The exact set of fields returned for the different FHIR resources depends
on the nature and complexity of the FHIR server’s data. The documentation
for the DSTU2 [http://hl7.org/fhir/DSTU2/resourcelist.htm] and
DSTU3 [http://hl7.org/fhir/STU3/resourcelist.html] resources can be used
to interpret the results.
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Clarity.EcogCriteriaTask


Description

This is a custom task for finding Eastern Cooperative Oncology Group (ECOG)
performance status scores in clinical trial inclusion and exclusion criteria.

An ECOG score provides a measure of the health and physical capabilities of a
patient. The scores range from 0 to 5, with higher scores indicating greater
degrees of physical disability. A score of 0 means perfect health and a score
of 5 means death.

These scores are typically used in oncology to assess a patient’s suitability
for various treatments.



Example

define final EcogCriteriaFunction:
    Clarity.EcogCriteriaTask({
        documentset: [Docs]
});







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	No

	Termsets are not used by this task.



	documentset

	documentset

	No

	


	cohort

	cohort

	No

	







Results








	Name

	Type

	Notes





	sentence

	str

	


	start

	int

	


	end

	int

	


	criteria_type

	str

	Either ‘Inclusion’ or ‘Exclusion’



	score_0

	int

	1 if ECOG score 0 was found, 0 if not



	score_1

	int

	1 if ECOG score 1 was found, 0 if not



	score_2

	int

	1 if ECOG score 2 was found, 0 if not



	score_3

	int

	1 if ECOG score 3 was found, 0 if not



	score_4

	int

	1 if ECOG score 4 was found, 0 if not



	score_5

	int

	1 if ECOG score 5 was found, 0 if not



	score_lo

	int

	value of the minimum ECOG score



	score_hi

	int

	value of the maximum ECOG score
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Clarity.GleasonScoreTask


Description

This is a custom task for extracting a patients Gleason score, which is relevant to prostate cancer diagnosis and staging.



Example

define final GleasonFinderFunction:
    Clarity.GleasonScoreTask({
        documentset: [Docs]
    });







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	No

	


	documentset

	documentset

	No

	


	cohort

	cohort

	No

	







Results








	Name

	Type

	Notes





	sentence

	str

	


	start

	int

	


	end

	int

	


	value

	int

	Gleason score



	value_first

	int

	First number in Gleason score



	value_second

	int

	Second number in Gleason score








Collector
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Clarity.O2SaturationTask


Description

This is a custom task for extracting
Oxygen [https://www.amazon.com/Oxygen-molecule-Oxford-Landmark-Science/dp/0198784937]
saturation information from clinical text. The O2SaturationTask processes
sentences and looks for information about Oxygen saturation levels and the use
of supplemental Oxygen devices. For instance, the sentence:

Vitals were T 98 BP 163/64 HR 73 O2 95% on 55% venti mask





contains O2 95% on 55% venti mask, meaning that the patient’s blood Oxygen
saturation level (probably measured by a
pulse oximeter [https://en.wikipedia.org/wiki/Pulse_oximetry])
is 95%, while receiving supplemental Oxygen via a
Venturi mask [https://en.wikipedia.org/wiki/Venturi_mask]. The flow rate
through the mask is sufficient to produce a 55% Oxygen concentration in the
air that the patient breathes.

The O2SaturationTask captures the Oxygen saturation level and other
data relevant to Oxygen delivery, flow rates, partial pressures, etc. If
sufficient clues are provided in the sentence, standard conversions are used
to estimate related quantities not explicitly stated. The complete set of
output fields and estimated quantities is listed in the Results section
below. Estimated values have field names with the suffix _est, to
distinguish them from values extracted directly from the text.



Conversions

The partial pressure of Oxygen in arterial blood can be estimated from a
pulse oximeter reading. From the supplemental data provided with
reference 1:







	SpO2 (%)

	PaO2 (mmHg)





	80

	44



	81

	45



	82

	46



	83

	47



	84

	49



	85

	50



	86

	52



	87

	53



	88

	55



	89

	57



	90

	60



	91

	62



	92

	65



	93

	69



	94

	73



	95

	79



	96

	86



	97

	96



	98

	112



	99

	145






The fraction of inspired Oxygen FiO2 can be estimated from knowledge of
the Oxygen delivery device and the O2 flow rate. For normal breathing in the
Earth’s atmosphere the O2 concentration is
approximately 21% [https://en.wikipedia.org/wiki/Atmosphere_of_Earth].
Hence the FiO2 for these conditions is 21%, or 0.21.

For a nasal cannula [https://en.wikipedia.org/wiki/Nasal_cannula], each L/min
of O2 adds approximately 4% to the FiO2 value 1. (The data in 1 covers the
range of 1-6 L/min, but the 4%/L rule seems to be the standard approximation in
the respiratory therapy literature for moderately higher flow nasal cannulas).







	Nasal Cannula Flow Rate (L/min)

	FiO2 (%)





	1

	24



	2

	28



	3

	32



	4

	36



	5

	40



	6

	44



	7

	48



	8

	52



	9

	56



	10

	60






For a nasopharyngeal catheter [https://en.wikipedia.org/wiki/Airway_management] 1:







	Nasopharyngeal Catheter Flow Rate (L/min)

	FiO2 (%)





	1

	24



	2

	28



	3

	32



	4

	36



	5

	40



	6

	44



	7

	48



	8

	52



	9

	56



	10

	60






For a simple fask mask with no reservoir [https://en.wikipedia.org/wiki/Simple_face_mask]:







	Face Mask Flow Rate (L/min)

	FiO2 (%)





	5

	35



	6

	39



	7

	43



	8

	47



	9

	51



	10

	55






For a face mask with reservoir (non-rebreather) [https://en.wikipedia.org/wiki/Non-rebreather_mask] 1:







	Face Mask With Reservoir Flow Rate (L/min)

	FiO2 (%)





	6

	60



	7

	70



	8

	80



	9

	90



	10

	95






For a Venturi mask [https://www.youtube.com/watch?v=W2mbRyTt_7k]:







	Venturi Mask Flow Rate (L/min)

	FiO2 (%)





	2

	24



	4

	28



	6

	31



	8

	35



	10

	40



	15

	60






The O2SaturationTask uses the data in these tables to linearly interpolate
FiO2 values for the stated devices and flow rates.



Example

define final O2Data:
    Clarity.O2SaturationTask({
        documentset: [Docs]
    });







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	documentset

	documentset

	No

	


	cohort

	cohort

	No

	







Results








	Name

	Type

	Notes





	sentence

	str

	The input sentence after textual cleanup operations have been performed.



	text

	str

	That portion of sentence containing an O2 saturation statement.



	start

	int

	Offset into sentence of the first character of the O2 saturation statement.



	end

	int

	One character past the end of the O2 saturation statement.



	device

	str

	The Oxygen delivery device, if any.



	flow_rate

	float

	Device Oxygen flow rate in liters/min.



	condition

	str

	Relation of the O2 saturation to the stated value:
‘APPROX’, ‘LESS_THAN’, ‘LESS_THAN_OR_EQUAL’,
‘GREATER_THAN’, ‘GREATER_THAN_OR_EQUAL’,
‘EQUAL’, ‘RANGE’



	value

	float

	Oxygen saturation percentage



	value2

	float

	Oxygen saturation percentage, only valid for ranges



	pao2

	int

	Oxygen partial pressure in mmHg, if any



	pao2_est

	int

	Oxygen partial pressure estimated from clues in sentence



	fio2

	int

	Fraction of inspired Oxygen, expressed as a percentage



	fio2_est

	int

	Fraction of inspired Oxygen estimated from clues in sentence



	p_to_f_ratio

	int

	PaO2/FiO2 extracted from sentence, if any



	p_to_f_ratio_est

	int

	P/F ratio estimated from clues in sentence, if any








Collector

No



References


	1(1,2,3,4,5)

	
Vlaar A, Toy P, Fung M, et. al.

A Consensus Redefinition of Transfusion-Related Acute Lung Injury

Transfusion (59) 2465-2476, 2019.

https://www.ncbi.nlm.nih.gov/pubmed/30993745











          

      

      

    

  

    
      
          
            
  
Clarity.PFTFinder


Description

Custom module for extracting pulmonary function test (PFT) values.



Examples

termset Terms:
  ["FEV1", "FEV", "PFT", "pulmonary function test"];

define final PFTTestPatients:
  Clarity.PFTFinder({
    termset:[Terms]
    });







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	Yes

	List of possible terms to find, e.g. ‘NYHA’



	documentset

	documentset

	No

	


	cohort

	cohort

	No

	







Results








	Name

	Type

	Notes





	sentence

	str

	Sentence where measurement is found



	start

	int

	offset of the first character in the matching text



	end

	int

	offset of the final character in the matching text plus 1



	fev1_condition

	str

	


	fev1_units

	str

	


	fev1_value

	floats

	


	fev1_text

	str

	


	fev1_count

	int

	


	fev1_fvc_ratio_count

	int

	


	fev1_fvc_condition

	str

	


	fev1_fvc_units

	str

	


	fev1_fvc_value

	float

	


	fev1_fvc_text

	str

	


	fvc_count

	int

	


	fvc_condition

	str

	


	fvc_units

	str

	


	fvc_value

	float

	


	fvc_text

	str
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Clarity.PregnancyTask


Description

This is a custom task for estimating pregnancy-related dates from pregnancy
duration statements in clinical text. For example, the phrase
30 y/o 24wks pregnant in a clinical report dated July 1, 2019 implies that
conception occured 24 weeks prior, on approximately Jan. 14th. For a normal
40 week pregnancy, the estimated delivery date would be 40 - 24 == 16 weeks
into the future, or sometime around Oct. 21. The complete set of
pregnancy-related dates and times is listed below.

The relevant dates can be computed from a wide variety of duration
statements. Some examples:

approx. 28 weeks pregnant
she is 2.5 months pregnant
pregnant at 26wks
approx. 10-12 weeks pregnant
patient is a 23 year G4P2 @ 27
patient is a 29 yo G1 @ 5.3wks
37 year old woman at 29 weeks
etc.







Example

define final PregnancyFunction:
    Clarity.PregnancyTask({
        documentset: [Docs]
    });







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	No

	Termsets are not used by this task.



	documentset

	documentset

	No

	


	cohort

	cohort

	No

	







Results








	Name

	Type

	Notes





	sentence

	str

	


	start

	int

	


	end

	int

	


	weeks_pregnant

	int or float

	


	weeks_remaining

	int or float

	


	trimester

	int

	1 if <=13 wks; 2 if [14, 26] wks; 3 otherwise



	date_conception

	str

	YYYY-MM-DD format



	date_delivery

	str

	YYYY-MM-DD format
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Clarity.RaceFinderTask


Description

This is a custom task for extracting a patient’s race (i.e. asian, african american, caucasian, etc.).



Example

define RaceFinderFunction:
    Clarity.RaceFinderTask({
        documentset: [DischargeSummaries]
    });







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	No

	


	documentset

	documentset

	No

	


	cohort

	cohort

	No

	







Results








	Name

	Type

	Notes





	sentence

	str

	


	start

	int

	


	end

	int

	


	value

	str

	Race mentioned in note



	value_normalized

	str

	Normalized value, e.g. caucasian -> white
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Clarity.TextStats


Description

Task that uses textacy [https://github.com/chartbeat-labs/textacy/blob/master/textacy/text_stats.py] to get aggregate statistics about the text.



Example

Clarity.TextStats({
  documentset: [ProviderNotes]
});







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	No

	


	documentset

	documentset

	No

	


	cohort

	cohort

	No

	


	group_by

	str

	No

	Default = report_type, the field that statistics be grouped on.








Results








	Name

	Type

	Notes





	avg_word_cnt

	float

	Average word count



	avg_grade_level

	float

	Average Flesch Kincaid grade level



	avg_sentences

	float

	Average number of sentences



	avg_long_words

	float

	Average number of long words



	avg_polysyllable_words

	float

	Average number of polysyllabic words








Collector

BaseCollector





          

      

      

    

  

    
      
          
            
  
Clarity.TNMStager


Description

Extract tumor stages from text. Read more here.



Example

define final TNMStage:
    Clarity.TNMStager ({
        cohort:PSAPatients,
        documentset: [Docs]
    });







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	No

	


	documentset

	documentset

	No

	


	cohort

	cohort

	No

	







Results

See the ‘Outputs’ table here.
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Clarity.TransfusionNursingNotesParser


Description

Task that parses Nursing notes (specifically formatted for Columbia University
Medical Center) for transfusion information.



Example

phenotype "TNN" version "2";

include ClarityCore version "1.0" called Clarity;

documentset TransfusionNotes:
    Clarity.createDocumentSet({
        "report_types":["Transfusion Flowsheet"]});

define TransfusionOutput:
    Clarity.TransfusionNursingNotesParser({
        documentset: [TransfusionNotes]
        });







Extends

BaseTask



Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	No

	


	documentset

	documentset

	No

	


	cohort

	cohort

	No

	







Results








	Name

	Type

	Notes





	reaction

	str

	yes or no



	elapsedMinutes

	int

	


	transfusionStart

	str

	YYYY-MM-DD HH:MM:SS (ISO format)



	transfusionEnd

	str

	YYYY-MM-DD HH:MM:SS (ISO format)



	bloodProductOrdered

	str

	


	dateTime

	str

	YYYY-MM-DD HH:MM:SS (ISO format) at which these measurements were taken



	timeDeltaMinutes

	int

	elapsed time in minutes since transfusionStart



	dryWeightKg

	float

	


	heightCm

	int

	


	tempF

	float

	


	tempC

	float

	


	heartRate

	int

	units of beats/min



	respRateMachine

	int

	units of breaths/min



	respRatePatient

	int

	units of breaths/min



	nibpSystolic

	int

	


	nibpDiastolic

	int

	


	nibpMean

	int

	


	arterialSystolic

	int

	


	arterialDiastolic

	int

	


	arterialMean

	int

	


	bloodGlucose

	int

	units of mg/dl



	cvp

	int

	units mmHg



	spO2

	int

	percentage



	oxygenFlow

	int

	units of Lpm



	endTidalCO2

	int

	units of mm Hg



	fiO2

	int

	percentage
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BaseTask

The base class for most ClarityNLP tasks. Provides most of the wiring needed to run individual algorithms.


Arguments









	Name

	Type

	Required

	Notes





	termset

	termset

	See implementation

	


	excluded_termset

	termset

	No

	If terms are present, feature should be excluded from results (depends on task implementation)



	documentset

	documentset

	No

	


	cohort

	cohort

	No

	







Results








	Name

	Type

	Notes





	pipeline_type

	str

	Pipeline type internal to ClarityNLP.



	pipeline_id

	int

	Pipeline ID internal to ClarityNLP.



	job_id

	int

	Job ID



	batch

	int

	Batch number of documents



	owner

	str

	Job owner



	nlpql_feature

	str

	Feature used in NLPQL define



	inserted_date

	date

	Date result written to data store



	concept_code

	int

	Code specified by user to assign to OMOP concept id.



	phenotype_final

	bool

	final flag designated in NLPQL; displays in final results



	report_id

	str

	Document report ID, if document level result



	subject

	str

	Document subject/patient, if document level result



	report_date

	str

	Document report date, if document level result



	report_type

	str

	Document report type, if document level result



	source

	str

	Document source, if document level result



	solr_id

	str

	Document Solr id field, if document level result








Functions


run()

Main function that sets up documents and runs the task execution.





output()

Gets Luigi file, used for job communication or temp output.





set_name(name)

Sets name of task.





write_result_data(temp_file: File, mongo_client: MongoClient, doc: dict, data: dict, prefix: str=’’, phenotype_final: bool=False)

Writes results to MongoDB.





write_multiple_result_data(temp_file: File, mongo_client: MongoClient, doc: dict, data: list, prefix: str=’’)

Writes results to MongoDB as a list.





write_log_data(job_status: str, status_message: str)

Writes log message to the job_status table.





run_custom_task(temp_file: File, mongo_client: MongoClient)

The primary function for tasks to implement to run tasks.





get_document_text(doc: dict, clean=True)

Returns a string containing the text of a given Solr document.





get_boolean(key: str, default=False)

Looks up custom argument with matching key of type bool.





get_integer(key: str, default=-1)

Looks up custom argument with matching key of type int.





get_string(key: str, default=’’)

Looks up custom argument with matching key of type str.





get_document_sentences(doc)

Returns a collection of sentences for the given Solr document.








          

      

      

    

  

    
      
          
            
  
BaseCollector

The base class for ClarityNLP aggregate tasks. Only gets called after all the other tasks of its related type are complete.


Functions


run(pipeline_id, job, owner, pipeline_type, pipeline_config)

Main function that runs the collector.





run_custom_task(pipeline_id, job, owner, pipeline_type, pipeline_config, client, db)

Primary function where custom implementation of the collector is written.





custom_cleanup(pipeline_id, job, owner, pipeline_type, pipeline_config, client, db)

Run custom custom cleanup after collector has run.





cleanup(pipeline_id, job, owner, pipeline_type, pipeline_config)

Main cleanup task that marks job as complete and runs custom cleanup tasks after collector is completed.






          

      

      

    

  

    
      
          
            
  
Data Operations




          

      

      

    

  

    
      
          
            
  
API Reference


NLP Web APIs

NLP endpoints provided by ClarityNLP.



	/kill_job/<int:job_id>

	/measurement_finder

	/named_entity_recognition

	/nlpql

	/nlpql_tester

	/nlpql_expander

	/nlpql_samples

	/nlpql_text/<string:name>

	/phenotype

	/phenotype_feature_results/<int:job_id>/<string:feature>/<string:subject>

	/phenotype_id/<int:phenotype_id>

	/phenotype_job_by_id/<string:id>

	/phenotype_jobs/<string:status_string>

	/phenotype_paged_results/<int:job_id>/<string:phenotype_final_str>

	/phenotype_result_by_id/<string:id>

	/phenotype_results_by_id/<string:ids>

	/phenotype_structure/<int:id>

	/phenotype_subject_results/<int:job_id>/<string:phenotype_final_str>/<string:subject>

	/phenotype_subjects/<int:job_id>/<string:phenotype_final_str>

	/pipeline

	/pipeline_id/<int:pipeline_id>

	/pipeline_types

	/pos_tagger

	/report_type_mappings

	/sections

	/status/<int:job_id>

	/term_finder

	/tnm_stage

	/value_extractor

	/vocabExpansion?type=<TYPE>&concept=<CONCEPT>&vocab=<VOCAB>

	/ngram_cohort

	OHDSI WebAPI Utilities
	/ohdsi_create_cohort?file=<FILENAME>

	/ohdsi_get_cohort?cohort_id=<COHORT_ID>

	/ohdsi_get_cohort_by_name?cohort_name=<COHORT_NAME>

	/ohdsi_get_conceptset?file=<FILENAME>

	/ohdsi_cohort_status?cohort_id=<COHORT_ID>













          

      

      

    

  

    
      
          
            
  
/kill_job/<int:job_id>

GET pids of NLPQL tasks. Attemps to kill running Luigi workers. Will only work when NLP API and Luigi are deployed on the same instance.



/measurement_finder

POST JSON to extract measurements. Sample input JSON here [https://github.com/ClarityNLP/ClarityNLP/blob/master/nlp/samples/library_inputs/sample_measurement_finder.json].



/named_entity_recognition

POST JSON to run spaCy’s NER. Sample input JSON here [https://github.com/ClarityNLP/ClarityNLP/blob/master/nlp/samples//library_inputs/sample_ner.json].



/nlpql

POST NLPQL plain text file to run phenotype against data in Solr. Returns links to view job status and results.
Learn more about NLPQL here and see samples of NLPQL here [https://github.com/ClarityNLP/ClarityNLP/tree/master/nlpql].



/nlpql_tester

POST NLPQL text file to test if parses successfully. Either returns phenotype JSON or errors, if any.
Learn more about NLPQL here and see samples of NLPQL here [https://github.com/ClarityNLP/ClarityNLP/tree/master/nlpql].



/nlpql_expander

POST to expand NLPQL termset macros. Read more here.



/nlpql_samples

GET a list of NLPQL samples.



/nlpql_text/<string:name>

GET NLPQL sample by name.



/phenotype

POST Phenotype JSON to run phenotype against data in Solr. Same as posting to /nlpql, but with the finalized JSON structured instead of raw NLPQL. Using /nlpql will be preferred for most users.
See sample here [https://github.com/ClarityNLP/ClarityNLP/tree/master/nlp/samples/phenotype].



/phenotype_feature_results/<int:job_id>/<string:feature>/<string:subject>

GET phenotype results for a given feature, job and patient/subject.



/phenotype_id/<int:phenotype_id>

GET a pipeline JSON based on the phenotype_id.



/phenotype_job_by_id/<string:id>

GET a phenotype jobs JSON by id.



/phenotype_jobs/<string:status_string>

GET a phenotype job list JSON based on the job status.



/phenotype_paged_results/<int:job_id>/<string:phenotype_final_str>

GET paged phenotype results.



/phenotype_result_by_id/<string:id>

GET phenotype result for a given mongo identifier.



/phenotype_results_by_id/<string:ids>

GET phenotype results for a comma-separated list of ids.



/phenotype_structure/<int:id>

GET phenotype structure parsed out.



/phenotype_subject_results/<int:job_id>/<string:phenotype_final_str>/<string:subject>

GET phenotype results for a given subject.



/phenotype_subjects/<int:job_id>/<string:phenotype_final_str>

GET phenotype_subjects.



/pipeline

POST a pipeline job (JSON) to run on the Luigi pipeline. Most users will use /nlpql.
Read more about pipelines here.
See sample JSON here [https://github.com/ClarityNLP/ClarityNLP/tree/master/nlp/samples/pipelines].



/pipeline_id/<int:pipeline_id>

GET a pipeline JSON based on the pipeline_id.



/pipeline_types

GET a list of valid pipeline types.



/pos_tagger

POST JSON to run spaCy’s POS Tagger. (Only recommended on smaller text documents.) Sample input JSON here [https://github.com/ClarityNLP/ClarityNLP/blob/master/nlp/samples//library_inputs/sample_pos_tag_text.json].



/report_type_mappings

GET a dictionary of report type mappings.



/sections

GET source file for sections and synonyms.



/status/<int:job_id>

GET status for a given job.



/term_finder

POST JSON to extract terms, context, negex, sections from text. Sample input JSON here [https://github.com/ClarityNLP/ClarityNLP/blob/master/nlp/samples/library_inputs/sample_term_finder.json].



/tnm_stage

POST JSON to extract TNM staging from text. Sample input JSON here [https://github.com/ClarityNLP/ClarityNLP/blob/master/nlp/samples/library_inputs/sample_tnm_stage.json].



/value_extractor

POST JSON to extract values such as BP, LVEF, Vital Signs etc. Sample input JSON here [https://github.com/ClarityNLP/ClarityNLP/blob/master/nlp/samples//library_inputs/sample_value_extractor.json].




          

      

      

    

  

    
      
          
            
  
/vocabExpansion?type=<TYPE>&concept=<CONCEPT>&vocab=<VOCAB>

About:

This API is responsible for vocabulary explosion for a given concept. API accepts a _type_ which can be synonyms, ancestors or descendants. The API has to accept the _concept_ name which is supposed be exploded. The vocabulary _vocab_ can also be passed as an optional parameter.

Parameters:


	Type: mandatory
- 1: synonyms
- 2: ancestors
- 3: descendants


	Concept: mandatory


	Vocab: optional




Example usage:

```
http://nlp-api:5000/vocabExpansion?type=1&concept=Inactive

http://nlp-api:5000/vocabExpansion?type=1&concept=Inactive&vocab=SNOMED
```




          

      

      

    

  

    
      
          
            
  
/ngram_cohort

GET

About:

Generating n-grams of the Report Text for a particular Cohort. API has to accept the Cohort ID, the _n_ in n-gram, and frequency (the minimum occurrence of a particular n-gram). The API also accepts a keyword. If given the keyword, only n-grams which contain that keyword are returned.

Parameters:


	Cohort ID : mandatory


	Keyword : optional


	n : mandatory


	frequency : mandatory




Example usage:

~/ngram_cohort?cohort_id=6&n=15&frequency=10

~/ngram_cohort?cohort_id=6&keyword=cancer&n=15&frequency=10








          

      

      

    

  

    
      
          
            
  
OHDSI WebAPI Utilities


/ohdsi_create_cohort?file=<FILENAME>


	Description:
- Creating cohorts using OHDSI web API.
- API requires a JSON file which contains cohort creation details.
- JSON file must be placed in /ohdsi/data/
- test_cohort.json is an example file which depicts the JSON structure which needs to be strictly followed.


	Method: GET


	Parameters:
- JSON file name


	Usage:
`
http://nlp-api:5000/ohdsi_create_cohort?file=<FILENAME>
`






/ohdsi_get_cohort?cohort_id=<COHORT_ID>


	Description: Get cohort details from OHDSI.


	Method: GET


	Parameters:
- cohort_id


	Usage:
`
http://nlp-api:5000/ohdsi_get_cohort?cohort_id=<COHORT_ID>
`






/ohdsi_get_cohort_by_name?cohort_name=<COHORT_NAME>


	Description: Get Cohort details by name


	Method: GET


	Parameters:
- cohort_name


	Usage:
`
http://nlp-api:5000/ohdsi_get_cohort_by_name?cohort_name=<COHORT_NAME>
`






/ohdsi_get_conceptset?file=<FILENAME>


	Description:
- Getting concept set info using OHDSI web API.
- API requires a JSON file which contains concept set details.
- JSON file must be placed in /ohdsi/data/
- test_concept.json is an example file which depicts the JSON structure which needs to be strictly followed.


	Method: GET


	Parameters:
- JSON file name


	Usage:
`
http://nlp-api:5000/ohdsi_get_conceptset?file=<FILENAME>
`






/ohdsi_cohort_status?cohort_id=<COHORT_ID>


	Description: Get the status of the triggered cohort creation job.


	Method: GET


	Parameters:
- cohort_id


	Usage:
`
http://nlp-api:5000/ohdsi_cohort_status?cohort_id=<COHORT_ID>
`








          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions (FAQ)


	How can I check the syntax of my NLPQL file without actually running it?

Send your NLPQL file via HTTP POST to the
nlpql_tester API endpoint. ClarityNLP will return a
a JSON representation of your file if the syntax is correct. If a syntax
error is present, ClarityNLP will print an error message and no JSON will
be returned.






	If I’m using the Docker version of ClarityNLP, how do I verify that all
the supporting Docker containers are up and running?

Open a terminal and run the command docker ps.  The status of each
container will be printed to stdout. Each container should report a
status message of Up n seconds, where n is an integer, if the container
is fully initialized and running.
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	Team
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Team

The team works from the Information and Communications Laboratory (ICL) at
the Georgia Tech Research Institute (GTRI) [https://gtri.gatech.edu/].

The team is closely associated with the Georgia Tech
Center for Health Analytics and Informatics (CHAI) [http://chai.gatech.edu/].




          

      

      

    

  

    
      
          
            
  
Partners

We’re currently collaborating with Celgene and the FDA.
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ClarityNLP documentation

ClarityNLP uses Sphinx Documentation [https://www.sphinx-doc.org/en/master/usage/quickstart.html].
Once installed, the ClarityNLP documentation site can be ran locally via
Sphinx Autobuild [https://pypi.org/project/sphinx-autobuild/] or via make. Documentation can use .rst (ReStructured Text)
or '.md (Markdown) file types.


Deployment

ClarityNLP Documentation is auto-deployed via ReadTheDocs [https://readthedocs.org]. ClarityNLP has two
main branches auto-deployed:


	development


	master [http://claritynlp.readthedocs.io/] (alternate link [http://clarity-nlp.readthedocs.io/])






FAQs

You may need to install the custom theme as well to run the project locally.

pip install sphinx_rtd_theme





To run locally, and after installing Sphinx Autobuild (see above), from ClarityNLP root directory, run:

sphinx-autobuild docs docs/_build/html









          

      

      

    

  

    
      
          
            
  
IT Guide

This portion of the guide is primarily for system administrators or
information technology support personnel.


System Architecture



	System Architecture







Networking



	Networking







Security



	Security









          

      

      

    

  

    
      
          
            
  
Networking




          

      

      

    

  

    
      
          
            
  
Security




          

      

      

    

  

    
      
          
            
  
System Architecture




          

      

      

    

  

    
      
          
            
  
Retrieve OAuth2 Access Token

The steps below will help you retrieve an OAuth2 access token for use with different http libraries/tools such as Postman and cURL.

In both the development and production environments clients can initiate an OAuth2 flow with the following parameters:


	grant_type with the value client_credentials


	client_id with “cli”


	client_secret with the value of the CLIENT_CLI_SECRET environment variable


	scope with a space-delimited list of requested scope permissions





Postman Example


	In the request building panel click the “Authorization” tab.


	In the “Type” dropdown, select “OAuth 2.0”


	Click “Get New Access Token”


	Type a Token Name, i.e. “ClarityNLP”


	Choose “Client Credentials” as the Grant Type


	Set Access Token URL as “https://idp.claritynlp.dev/connect/token”. Change domain in production.


	Set Client ID as “cli”


	Set Client Secret as value of CLIENT_CLI_SECRET environment variable


	Set Scope as space-delimited list of requested scope permissions, i.e. “ingest_api nlp_api solr_api”


	Set Client Authentication as “Send as Basic Auth header”






cURL Example

curl -LkX POST -d "client_id=cli&client_secret=secret&grant_type=client_credentials" https://idp.claritynlp.dev/connect/token









          

      

      

    

  

    
      
          
            
  
Migrating data from AACT Database to ClarityNLP’s Solr Instance

Parameters: None

Example Usage: ~/upload_from_aact

About:

POST an array of JSON objects, where each JSON object has the below structure. Endpoints and Request creation can be found in upload.py.

    {
        "subject": 123456,
        "source": "Report Source",
        "report_type": "Report Type",
        "report_text": "Report Content",
        "report_id": "Report ID",
        "id": 1234,
        "report_date": "2161-06-13T04:00:00Z"
    }








          

      

      

    

  

    
      
          
            
  
Uploading Files to ClarityNLP’s Solr Instance

About:

A simple UI interface to upload files to ClarityNLP’s Solr instance. Currently accepts only JSON and CSV files with the structure mentioned in the UI.

Parameters: None

Example Usage: ~/upload




          

      

      

    

  

    
      
          
            
  
Troubleshooting Guide




          

      

      

    

  

    
      
          
            
  
NLPQL


Overview


What is NLPQL?

Natural Language Processing Query Language (NLPQL) is a computable phenotyping syntax for unstructured data.  It is based on the Clinical Query Language (CQL) standard.



What is Computable Phenotyping?

Computable phenotypes are machine-interpretable objects that explicitly define the features of a patient cohort.  For example, here is a computable phenotype for hypothyroidism [http://www.ohdsi.org/web/atlas/#/cohortdefinition/414] represented in the syntax used by the OHDSI consortium. This phenotype specifies clinical concepts relevant to hypothyroidism including diagnoses, medications, and laboratories. What makes it “computable” is that the OHDSI definition is in fact a parseable JSON object that includes 1) the specific codes (eg ICD, SNOMED, LOINC, etc) that define each clinical concept and 2) the logic (temporal etc) that combines these concepts into a definition of hypothyroidism.



What’s different about NLPQL?

Prior computable phenotyping efforts have been focused on structured data (eg conditions, drugs, procedures, labs, etc).  NLPQL is designed to support phenotype specifications that include unstructured text (eg. provider notes, radiology reports, pathology reports, etc) as well.



Does my data need to be in a special model or format to run NLPQL?

No. The ClarityNLP platform can ingest unstructured data from any format and run NLPQL.



What NLP functions can I use in NLPQL Phenotypes?

See the ClarityNLP Module documentation section for built-in NLP functions and how to incorporate your own NLP modules.




Basic Syntax


Basis in CQL



Basic Rules



Naming and Aliasing Conventions




ClarityNLP Document Sets


createReportTagList




ClarityNLP Data Entities


TermFinder



ProviderAssertion



ValueExtraction



MeasurementExtraction



dateDiff



NamedEntityRecognition




OHDSI Connectors


getCohort




Operations


Logical operations



Comparator operations




NLPQL Objects


phenotype



version



description



datamodel



include



codesystem



valueset



termset



documentset



cohort



population



context



define




Running



Results





          

      

      

    

  

    
      
          
            
  
Building Phenotypes with NLPQL

Phenotypes can be created using the NLPQL language [http://clarity-nlp.readthedocs.io/en/latest/nlpql.html] and executed over the ClarityNLP API [http://clarity-nlp.readthedocs.io/en/latest/apis/apis.html#nlpql].
NLPQL is parsed to JSON using ANTLR [http://www.antlr.org/], and then processed using Luigi.



Luigi

Phenotype jobs are orchestrated with Luigi [http://luigi.readthedocs.io/en/stable/], which spawns multiple workers to execute pipelines in batches of documents.



Phenotypes and Pipelines

Phenotypes are generally composed of multiple pipelines and logical rules to determine phenotype results.



Phenotype Results

Phenotype results consist of 2 types: intermediate and final. Intermediate results are results of any pipeline. Final phenotype results are the output of the phenotypes against the phenotype logic and anything that was labeled final in NLPQL.




          

      

      

    

  

    
      
          
            
  
	Clarity.createDocumentSet({

	“report_types”:[“Discharge summary”],
“report_tags”: [],
“filter_query”: “subject:23224”,
“query”:”report_text:amoxicillin”});







          

      

      

    

  

    
      
          
            
  
Basic Examples


Finding Symptoms

Here is an example of some code

phenotype "Patient Temperatures" version "2";

     include ClarityCore version "1.0" called Clarity;

     documentset NursingNotes:
        Clarity.createReportTagList(["Nurse"]);

     termset TemperatureTerms:
        ["temp","temperature","t"];

      define Temperature:
        Clarity.ValueExtraction({
          termset:[TemperatureTerms],
          documentset: [NursingNotes],
          minimum_value: "96",
          maximum_value: "106"
          });

      define final hasFever:
          where Temperature.value >= 100.4;







Looking up stuff


Looking up more stuff
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NLPQL:

limit 1000;

//phenotype name

phenotype "Ejection Fraction Values" version "1";

//include Clarity main NLP libraries

include ClarityCore version "1.0" called Clarity;

termset EjectionFractionTerms:

["ef","ejection fraction","lvef"];

define EjectionFraction:
Clarity.ValueExtraction({
termset:[EjectionFractionTerms],
minimum value: "10",

maximum value: "85"

)i

//logical Context (Patient, Document)

context Patient;

define final LowEFPatient:

where EjectionFraction.value < 40;

define final BorderlineLowEFPatient:
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